Advertisement

Lysosomes pp 43-71 | Cite as

Analyzing Lysosome-Related Organelles by Electron Microscopy

  • Ilse Hurbain
  • Maryse Romao
  • Ptissam Bergam
  • Xavier Heiligenstein
  • Graça RaposoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1594)

Abstract

Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

Key words

Lysosome-related organelles Transmission electron microscopy Chemical fixation High pressure freezing Freeze substitution Immunolabeling Tokuyasu 

Notes

Acknowledgements

We are grateful to Institut Curie and the BioImaging platform (PICT IBiSA), member of the France-BioImaging national research infrastructure (ANR-10-INSB-04) and CNRS. Research in our group is supported by the Fondation pour la Recherche Médical (Equipes FRM), Association de Recherche pour le Cancer (ARC), Indian French cooperation (CEFIPRA), Clarins and L’Oréal.

References

  1. 1.
    Raposo G, Marks MS, Cutler DF (2007) Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 19(4):394–401CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Marks MS, Heijnen HF, Raposo G (2013) Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol. 25(4):495–505. doi: 10.1016/j.ceb.2013.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Novikoff AB, Albala A, Biempica L (1968) Ultrastructural and cytochemical observations on B-16 and Harding-Passey mouse melanomas. The origin of premelanosomes and compound melanosomes. J Histochem Cytochem 16(5):299–319CrossRefPubMedGoogle Scholar
  4. 4.
    Palade GE (1983) Membrane biogenesis: an overview. Methods Enzymol 96:xxix–xxlvCrossRefPubMedGoogle Scholar
  5. 5.
    Walther P, Ziegler A (2002) Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208(Pt 1):3–10CrossRefPubMedGoogle Scholar
  6. 6.
    Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high pressure freezing. J Microsc 203:285–294CrossRefPubMedGoogle Scholar
  7. 7.
    Hawes P, Netherton CL, Mueller M, Wileman T, Monaghan P (2007) Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. J Microsc 226(Pt 2):182–189. doi: 10.1111/j.1365-2818.2007.01767.x CrossRefPubMedGoogle Scholar
  8. 8.
    Shio H, Farquhar MG, de Duve C (1974) Lysosomes of the arterial wall. IV. Cytochemical localization of acid phosphatase and catalase in smooth muscle cells and foam cells from rabbit atheromatous aorta. Am J Pathol 76(1):1–16PubMedPubMedCentralGoogle Scholar
  9. 9.
    Novikoff AB, Novikoff PM (1977) Cytochemical contributions to differentiating GERL from the Golgi apparatus. Histochem J 9(5):525–551CrossRefPubMedGoogle Scholar
  10. 10.
    Slot JW, Geuze HJ (1981) Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90:533–536CrossRefPubMedGoogle Scholar
  11. 11.
    Geuze HJ, Slot JW, Strous GJ, Lodish HF, Schwartz AL (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32:277–287CrossRefPubMedGoogle Scholar
  12. 12.
    Slot JW, Posthuma G, Chang L, Crapo JD, Geuze HJ (1988b) Quantitative assessment of immuno-gold labeling in cryosections. In: Verleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC Press Inc., Boca Raton, FL, pp 135–156Google Scholar
  13. 13.
    Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2(10):2480–2491CrossRefPubMedGoogle Scholar
  14. 14.
    Raposo G, Kleijmeer MJ, Posthuma G, Slot JW, Geuze HJ (1997) Immunogold labeling of ultrathin cryosections: application in immunology. In: Herzenberg LA, Weir D, Herzenberg LA, Blackwell C (eds) Handbook of experimental immunology, 5th edn, vol 4. Blackwell Science Inc., Cambridge, MA, pp 1–11, Chapter 208Google Scholar
  15. 15.
    Klumperman J, Raposo G (2014) The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 6(10):a016857. doi: 10.1101/cshperspect.a016857 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Setty SR, Tenza D, Sviderskaya EV, Bennett DC, Raposo G, Marks MS (2008) Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454(7208):1142–1146CrossRefPubMedGoogle Scholar
  17. 17.
    Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV, Stewart A, Robinson MS, Bennett DC, Cutler DF, Bonifacino JS, Marks MS, Raposo G (2005) Functions of AP-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell 16:5356–5372CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152(4):809–824CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Delevoye C, Heiligenstein X, Ripoll L, Gilles-Marsens F, Dennis MK, Linares RA, Derman L, Gokhale A, Morel E, Faundez V, Marks MS, Raposo G (2016) BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr Biol 26(1):1–13. doi: 10.1016/j.cub.2015.11.020 CrossRefPubMedGoogle Scholar
  20. 20.
    Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, Geerts WJ, Verkleij AJ, Salamero J, Marks MS, Raposo G (2009) AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J Cell Biol 187(2):247–264. doi: 10.1083/jcb.200907122.
  21. 21.
    Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC (2006) Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175(2):271–281CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. doi: 10.1016/j.devcel.2011.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Koster AJ, Klumperman J (2003) Electron microscopy in cell biology: integrating structure and function. Nat Rev Mol Cell Biol Suppl:SS6–SS10Google Scholar
  24. 24.
    Daniele T, Hurbain I, Vago R, Casari G, Raposo G, Tacchetti C, Schiaffino MV (2014) Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis. Curr Biol 24(4):393–403. doi: 10.1016/j.cub.2014.01.007 CrossRefPubMedGoogle Scholar
  25. 25.
    Hurbain I, Geerts WJ, Boudier T, Marco S, Verkleij AJ, Marks MS, Raposo G (2008) Electron tomography of early melanosomes: Implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci U S A 105(50):19726–19731CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rochin L, Hurbain I, Serneels L, Fort C, Watt B, Leblanc P, Marks MS, De Strooper B, Raposo G, van Niel G (2013) BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proc Natl Acad Sci U S A 110(26):10658–10663. doi: 10.1073/pnas.1220748110 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kukulski W, Schorb M, Kaksonen M, Briggs JA (2012) Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150(3):508–520. doi: 10.1016/j.cell.2012.05.046 CrossRefPubMedGoogle Scholar
  28. 28.
    Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2012) Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 111:235–257. doi: 10.1016/B978-0-12-416026-2.00013-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Mironov AA, Beznoussenko GV (2012) Correlative light-electron microscopy a potent tool for the imaging of rare or unique cellular and tissue events and structures. Methods Enzymol 504:201–219. doi: 10.1016/B978-0-12-391857-4.00010-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Muller-Reichert T, Verkade P (2012) Introduction to correlative light and electron microscopy. Methods Cell Biol 111:xvii–xxix. doi: 10.1016/B978-0-12-416026-2.03001-6 CrossRefPubMedGoogle Scholar
  31. 31.
    van Rijnsoever C, Oorschot V, Klumperman J (2008) Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5(11):973–980. doi: 10.1038/nmeth.1263. doi:nmeth.1263 [pii]
  32. 32.
    Polishchuk EV, Polishchuk RS, Luini A (2013) Correlative light-electron microscopy as a tool to study in vivo dynamics and ultrastructure of intracellular structures. Methods Mol Biol 931:413–422. doi: 10.1007/978-1-62703-056-4_20 CrossRefPubMedGoogle Scholar
  33. 33.
    Sepulveda FE, Burgess A, Heiligenstein X, Goudin N, Menager MM, Romao M, Cote M, Mahlaoui N, Fischer A, Raposo G, Menasche G, de Saint BG (2015) LYST controls the biogenesis of the endosomal compartment required for secretory lysosome function. Traffic 16(2):191–203. doi: 10.1111/tra.12244 CrossRefPubMedGoogle Scholar
  34. 34.
    Heiligenstein X, Heiligenstein J, Delevoye C, Hurbain I, Bardin S, Paul-Gilloteaux P, Sengmanivong L, Regnier G, Salamero J, Antony C, Raposo G (2014) The CryoCapsule: simplifying correlative light to electron microscopy. Traffic 15(6):700–716. doi: 10.1111/tra.12164 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Heiligenstein X, Hurbain I, Delevoye C, Salamero J, Antony C, Raposo G (2014) Step by step manipulation of the CryoCapsule with HPM high pressure freezers. Methods Cell Biol 124:259–274. doi: 10.1016/B978-0-12-801075-4.00012-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Markert SM, Britz S, Proppert S, Lang M, Witvliet D, Mulcahy B, Sauer M, Zhen M, Bessereau JL, Stigloher C (2016) Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome. Neurophotonics 3(4):041802. doi: 10.1117/1.NPh.3.4.041802 CrossRefPubMedGoogle Scholar
  37. 37.
    Wolff G, Hagen C, Grunewald K, Kaufmann R (2016) Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 108(9):245–258. doi: 10.1111/boc.201600008 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu B, Xue Y, Zhao W, Chen Y, Fan C, Gu L, Zhang Y, Zhang X, Sun L, Huang X, Ding W, Sun F, Ji W, Xu T (2015) Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 5:13017. doi: 10.1038/srep13017 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Ilse Hurbain
    • 1
    • 2
    • 3
  • Maryse Romao
    • 1
    • 2
    • 3
  • Ptissam Bergam
    • 1
    • 2
    • 3
    • 4
  • Xavier Heiligenstein
    • 1
    • 2
    • 3
  • Graça Raposo
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut CuriePSL Research University, CNRS, UMR 144ParisFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 144ParisFrance
  3. 3.Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut CurieParisFrance
  4. 4.Characterization Core LabKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations