Advertisement

Visualizing and Tracking T Cell Motility In Vivo

  • Robert A. BensonEmail author
  • James M. Brewer
  • Paul Garside
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1591)

Abstract

Advanced cellular tracking and imaging techniques allow the dynamic nature of immune responses to be studied in detail and in a physiological context. Here we describe two methods applying multiphoton laser scanning microscopy to the visualization and tracking of fluorescently labeled CD4+ T cells and dendritic cells (DCs) within the complex lymph node (LN) environment. Ex vivo imaging of LNs allows the study of cell populations without the need for skilled surgical techniques while providing comparable data. While more technically demanding, intravital imaging of the popliteal LN allows aspects of T cell/DC responses to be studied in the context of an intact lymph and blood supply. We also describe methods to aid the acquisition of time series data suitable for cellular tracking, providing a quantitative approach to real-time analysis of DC and T cell LN responses.

Keywords

T cell Dendritic cell Adoptive transfer In vivo Intravital imaging Multiphoton Migration 

Notes

Acknowledgements

The authors acknowledge Arthritis Research UK (ARUK) for funding their research in conjunction with the ARUK Rheumatoid Arthritis Pathogenesis Centre of Excellence—RACE—part-funded by Arthritis Research UK through grant number 20298. The Centre is a collaboration between the Universities of Glasgow, Newcastle, and Birmingham. This work was also supported by the IMI JU-funded project BTCure 115142-2.

References

  1. 1.
    Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873. doi: 10.1126/science.1070051 CrossRefPubMedGoogle Scholar
  2. 2.
    Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159. doi: 10.1038/nature02238 CrossRefPubMedGoogle Scholar
  3. 3.
    Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204(3):489–495. doi: 10.1084/jem.20061706 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH, Bankert K, von Andrian UH, Moon JJ, Mempel TR, Luster AD (2012) CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37(6):1091–1103. doi: 10.1016/j.immuni.2012.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Celli S, Garcia Z, Bousso P (2005) CD4 T cells integrate signals delivered during successive DC encounters in vivo. J Exp Med 202(9):1271–1278. doi: 10.1084/jem.20051018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Garcia Z, Pradelli E, Celli S, Beuneu H, Simon A, Bousso P (2007) Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc Natl Acad Sci U S A 104(11):4553–4558. doi: 10.1073/pnas.0610019104 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876. doi: 10.1126/science.1071065 CrossRefPubMedGoogle Scholar
  8. 8.
    Bousso P, Robey E (2003) Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4(6):579–585. doi: 10.1038/ni928 CrossRefPubMedGoogle Scholar
  9. 9.
    Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, Peixoto A, Flynn MP, Senman B, Junt T, Wong HC, Chakraborty AK, von Andrian UH (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9(3):282–291. doi: 10.1038/ni1559 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Celli S, Lemaitre F, Bousso P (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27(4):625–634. doi: 10.1016/j.immuni.2007.08.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Obst R, van Santen HM, Mathis D, Benoist C (2005) Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 201(10):1555–1565. doi: 10.1084/jem.20042521 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Benson RA, MacLeod MK, Hale BG, Patakas A, Garside P, Brewer JM (2015) Antigen presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell generation in vivo. eLife 4. doi: 10.7554/eLife.06994
  13. 13.
    Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG (2009) Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat Immunol 10(1):58–65. doi: 10.1038/ni.1682 CrossRefPubMedGoogle Scholar
  14. 14.
    Nombela-Arrieta C, Mempel TR, Soriano SF, Mazo I, Wymann MP, Hirsch E, Martinez AC, Fukui Y, von Andrian UH, Stein JV (2007) A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204(3):497–510. doi: 10.1084/jem.20061780 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17(8):763–767. doi: 10.1038/11698 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5(12):1235–1242. doi: 10.1038/ni1134 CrossRefPubMedGoogle Scholar
  17. 17.
    Zinselmeyer BH, Dempster J, Gurney AM, Wokosin D, Miller M, Ho H, Millington OR, Smith KM, Rush CM, Parker I, Cahalan M, Brewer JM, Garside P (2005) In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J Exp Med 201(11):1815–1823. doi: 10.1084/jem.20050203 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci U S A 100(5):2604–2609. doi: 10.1073/pnas.2628040100 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Allen CD, Okada T, Tang HL, Cyster JG (2007) Imaging of germinal center selection events during affinity maturation. Science (New York, NY) 315(5811):528–531. doi: 10.1126/science.1136736 CrossRefGoogle Scholar
  20. 20.
    Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250. doi: 10.1038/ni1139 CrossRefPubMedGoogle Scholar
  21. 21.
    Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223(1):77–92CrossRefPubMedGoogle Scholar
  22. 22.
    le Roux BT, Lowther CE, Mukheibir SC (1975) Pre-operative preparation of the skin with a depilatory. S Afr Med J 49(42):1761–1762PubMedGoogle Scholar
  23. 23.
    Liou HL, Myers JT, Barkauskas DS, Huang AY (2012) Intravital imaging of the mouse popliteal lymph node. J Vis Exp 60. doi: 10.3791/3720
  24. 24.
    Beltman JB, Maree AF, de Boer RJ (2009) Analysing immune cell migration. Nat Rev Immunol 9(11):789–798. doi: 10.1038/nri2638 CrossRefPubMedGoogle Scholar
  25. 25.
    Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I, Miller MJ (2009) Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol 461:349–378. doi: 10.1016/s0076-6879(09)05416-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Robert A. Benson
    • 1
    Email author
  • James M. Brewer
    • 2
  • Paul Garside
    • 3
  1. 1.Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, The University of GlasgowGlasgowUK
  2. 2.Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of GlasgowGlasgowUK
  3. 3.Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, Wellcome Trust Centre for Molecular Parasitology, University of GlasgowGlasgowUK

Personalised recommendations