Advertisement

Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1

  • Susanne Brenzinger
  • Kai M. Thormann
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1593)

Abstract

The stator is an eminent component of the flagellar motor and determines a number of the motor’s properties, such as the rotation-energizing coupling ion (H+ or Na+) or the torque that can be generated. The stator consists of several units located in the cytoplasmic membrane surrounding the flagellar drive shaft. Studies on flagellar motors of several bacterial species have provided evidence that the number as well as the retention time of stators coupled to the motor is highly dynamic and depends on the environmental conditions. Notably, numerous species possess more than a single distinct set of stators. It is likely that the presence of different stator units enables these bacteria to adjust the flagellar motor properties and function to meet the environmental requirements. One of these species is Shewanella oneidensis MR-1 that is equipped with a single polar flagellum and two stator units, the Na+-dependent PomAB and the H+-dependent MotAB. Here, we describe a method to determine stator dynamics by fluorescence microscopy, demonstrating how bacteria can change the composition of an intricate molecular machine according to environmental conditions.

Key words

FRAP Flagellum Motor Stator Dynamics 

References

  1. 1.
    Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274CrossRefPubMedGoogle Scholar
  2. 2.
    Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701CrossRefPubMedGoogle Scholar
  3. 3.
    Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132CrossRefPubMedGoogle Scholar
  4. 4.
    Stock D, Namba K, Lee LK (2012) Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr Opin Biotechnol 23:545–554CrossRefPubMedGoogle Scholar
  5. 5.
    Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:1917–1926CrossRefGoogle Scholar
  6. 6.
    Leake MC, Chandler JH, Wadhams GH et al (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358CrossRefPubMedGoogle Scholar
  7. 7.
    Reid SW, Leake MC, Chandler JH et al (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 103:8066–8071CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kojima S (2015) Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr Opin Microbiol 28:66–71CrossRefPubMedGoogle Scholar
  9. 9.
    Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–812CrossRefPubMedGoogle Scholar
  10. 10.
    Sowa Y, Rowe AD, Leake MC et al (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919CrossRefPubMedGoogle Scholar
  11. 11.
    Tipping MJ, Steel BC, Delalez NJ et al (2013) Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol Microbiol 87:338–347CrossRefPubMedGoogle Scholar
  12. 12.
    Tipping MJ, Delalez NJ, Lim R et al (2013) Load-dependent assembly of the bacterial flagellar motor. MBio 4:e00551-13. doi: 10.1128/mBio.00551-13 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A 110:11839–11844CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fukuoka H, Wada T, Kojima S et al (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71:825–835CrossRefPubMedGoogle Scholar
  15. 15.
    Paulick A, Delalez NJ, Brenzinger S et al (2015) Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol Microbiol 96:993–1001CrossRefPubMedGoogle Scholar
  16. 16.
    Paulick A, Koerdt A, Lassak J et al (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850CrossRefPubMedGoogle Scholar
  17. 17.
    Thormann KM, Paulick A (2010) Tuning the flagellar motor. Microbiology 156:1275–1283CrossRefPubMedGoogle Scholar
  18. 18.
    Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200CrossRefPubMedGoogle Scholar
  19. 19.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  20. 20.
    Lassak J, Henche AL, Binnenkade L, Thormann KM (2010) ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol 76:3263–3274CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRefPubMedGoogle Scholar
  22. 22.
    Brenzinger S, Dewenter L, Delalez NJ et al (2016) Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions. Mol Microbiol 102:925–938Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute for Microbiology and Molecular BiologyJustus-Liebig-Universität GießenGießenGermany

Personalised recommendations