Cryopreservation: Vitrification and Controlled Rate Cooling

  • Charles J. HuntEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1590)


Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.

The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective pressure on the cells selecting out a nonrepresentative, freeze-resistant subpopulation. Optimizing this process requires knowledge of the fundamental processes that occur during the freezing of cellular systems, the mechanisms of damage and methods for avoiding them. This chapter draws together the knowledge of cryopreservation gained in other systems with the current state-of-the-art for embryonic and induced pluripotent stem cell preservation in an attempt to provide the background for future attempts to optimize cryopreservation protocols.

Key words

Embryonic stem cells Induced pluripotent stem cells Human Cell line Cryopreservation Vitrification Slow cooling 


  1. 1.
    Unger C, Skottman H, Blomberg P et al (2008) Good manufacturing practice and clinical human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53PubMedCrossRefGoogle Scholar
  2. 2.
    Bosse R, Singhofer-Wowra M, Rosenthal F, Schulz G (1997) Good manufacturing practice production of human stem cells for somatic cell and gene therapy. Stem Cells 15(s2):275–280PubMedCrossRefGoogle Scholar
  3. 3.
    Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterisation and quantifying cell and tissue-based therapies for clinical translation. Stem Cells 28:996–1004PubMedPubMedCentralGoogle Scholar
  4. 4.
    Stacey G (2007) Standardisation of cell culture procedures. In: Stacey G, Davis J (eds) Medicines from animal cell culture. Wiley, Chichester, pp 589–601CrossRefGoogle Scholar
  5. 5.
    Chen VC, Couture SM, Ye J et al (2012) Scalable GMP compliant suspension culture systems for human ES cells. Stem Cell Res 8:388–402PubMedCrossRefGoogle Scholar
  6. 6.
    Allegrucci C, Young LE (2007) Differences between human embryonic stem cell lines. Hum Reprod Update 13:103120Google Scholar
  7. 7.
    Stacey G (2007) Risk assessment of cell culture procedures. In: Stacey G, Davis J (eds) Medicines from animal cell culture. Wiley, Chichester, pp 569–587CrossRefGoogle Scholar
  8. 8.
    Coopman K (2011) Large scale compatible methods for the preservation of human embryonic stem cells: current perspectives. Biotechnol Prog 27:1511–1521PubMedCrossRefGoogle Scholar
  9. 9.
    Rajamani K, Li Y-S, Hseih D-K et al (2014) Genetic and epigenetic instability of stem cells. Cell Transplant 23:417–433PubMedCrossRefGoogle Scholar
  10. 10.
    Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, Boca Raton, pp 3–65CrossRefGoogle Scholar
  12. 12.
    Muldrew K, Acker JP, Elliot JAW, McGann LE (2004) The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 67–108CrossRefGoogle Scholar
  13. 13.
    Pegg DE (2005) The role of vitrification techniques of cryopreservation in reproductive medicine. Hum Fertil (Camb) 8:231–239CrossRefGoogle Scholar
  14. 14.
    Franks F (1982) The properties of aqueous solutions at subzero temperatures. In: Franks F (ed) Water a Comprehensive Treatise, vol 7. Plenum Press, New York & London, pp 215–338Google Scholar
  15. 15.
    Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98PubMedCrossRefGoogle Scholar
  16. 16.
    Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10:414–426PubMedCrossRefGoogle Scholar
  17. 17.
    Lovelock JE (1953) The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36PubMedCrossRefGoogle Scholar
  18. 18.
    Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 7:347–369CrossRefGoogle Scholar
  19. 19.
    Leibo SP, McGrath JJ, Cravalho EG (1978) Microscopic observations of intracellular ice formation in unfertilised mouse ova as a function of cooling rate. Cryobiology 15:257–271PubMedCrossRefGoogle Scholar
  20. 20.
    Griffiths JB, Cox CS, Beadle DJ et al (1979) Changes in cell size during the cooling, warming and post-thawing periods of the freeze-thaw cycle. Cryobiology 16:141–151PubMedCrossRefGoogle Scholar
  21. 21.
    Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury – evidence from Chinese hamster tissue culture cells. Exp Cell Res 71:345–355PubMedCrossRefGoogle Scholar
  22. 22.
    Mazur P, Leibo SP, Farrant J et al (1970) Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In: Wolstenholme GEW, O’Connor M (eds) The frozen cell. J&A Churchill, London, pp 69–88Google Scholar
  23. 23.
    Mazur P (1976) Freezing and low temperature storage of living cells. In: Muhlbock O (ed) Proceedings of the 1974 workshop on basic aspects of freeze preservation of mouse strains. Jackson Laboratory. Gustav Fisher Verlag, Bar Harbour ME, pp 1–12Google Scholar
  24. 24.
    Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 2: Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87PubMedCrossRefGoogle Scholar
  25. 25.
    Souza H, Mazur P (1978) Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol. Biophys J 23:89–100CrossRefGoogle Scholar
  26. 26.
    Rubinsky B, Pegg DE (1988) A mathematical model for the freezing process in biological tissues. Proc R Soc Lond 234:343–358PubMedCrossRefGoogle Scholar
  27. 27.
    Pitt RE, Chandrasekaran M, Parks JE (1992) Performance of a kinetic model of intracellular ice formation based on the extent of supercooling. Cryobiology 29:359–373PubMedCrossRefGoogle Scholar
  28. 28.
    Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593CrossRefGoogle Scholar
  29. 29.
    Karlsson JOM, Cravalho EG, Toner M (1993) Intracellular ice formation: causes and consequences. Cryo-Letters 14:323–334Google Scholar
  30. 30.
    Franks F, Mathias SF, Galfre P et al (1983) Ice nucleation and freezing in undercooled cells. Cryobiology 20:298–309PubMedCrossRefGoogle Scholar
  31. 31.
    Mazur P (1965) The role of membranes in the freezing of yeast and other cells. Ann N Y Acad Sci 125:658–676PubMedCrossRefGoogle Scholar
  32. 32.
    Acker JP, Elliot JAW, McGann LE (2001) Intracellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J 81:1389–1397PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Berger WK, Uhrik B (1996) Freeze-induced shrinkage of individual cells and cell-to-cell propagation of intracellular ice in chains from salivary glands. Experientia 15:843–850CrossRefGoogle Scholar
  34. 34.
    Farrent J, Walter CA, Lee H, McGann LE (1977) Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiology 14:273–286CrossRefGoogle Scholar
  35. 35.
    Levitt J (1962) A sulfhydryl-disulphide hypothesis of frost injury and resistance in plants. J Theor Biol 3:355–391CrossRefGoogle Scholar
  36. 36.
    Mazur P (1973) Freezing of living cells: Mechanisms and implications. Am J Physiol 247:C125–C147Google Scholar
  37. 37.
    Farrent J, Morris GJ (1973) Thermal shock and dilution shock as the causes of freezing injury. Cryobiology 10:134–140CrossRefGoogle Scholar
  38. 38.
    Steponkus PL, Dowgert MF (1981) Gas bubble formation during intracellular ice formation. Cryo-Letters 2:42–47Google Scholar
  39. 39.
    Shimada K, Asahina E (1975) Visualization of intracellular ice crystals formed in rapidly frozen cells at −27 °C. Cryobiology 12:209–218PubMedCrossRefGoogle Scholar
  40. 40.
    Bischof JC, Rubinsky B (1993) Large ice crystals in the nucleus of rapidly frozen liver cells. Cryobiology 30:597–603PubMedCrossRefGoogle Scholar
  41. 41.
    Mazur P (1990) Equilibrium, quasi-equilibrium and non-equilibrium freezing of mammalian embryos. Cell Biophys 17:53–92PubMedCrossRefGoogle Scholar
  42. 42.
    Acker JP, McGann LE (2003) Protective effect of intracellular ice during freezing. Cryobiology 46:197–202PubMedCrossRefGoogle Scholar
  43. 43.
    Armitage WJ, Juss BK (1996) The influence of cooling rate on the survival of frozen cells differs in monolayers and in suspension. Cryo-Letters 17:13–218Google Scholar
  44. 44.
    Zhurova M, Woods EJ, Acker JP (2010) Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage. Cryobiology 61:133–141PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pegg DE, Diaper MP (1988) On the mechanism of injury to slowly frozen erythrocytes. Biophys J 54:471–488PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mazur P, Cole KW (1989) Roles of the unfrozen fraction, salt concentration and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology 26:1–29PubMedCrossRefGoogle Scholar
  47. 47.
    Pegg DE, Diaper MP (1989) The “unfrozen fraction” hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence. Cryobiology 26:30–43PubMedCrossRefGoogle Scholar
  48. 48.
    Meryman HT (1970) The exceeding of a minimum tolerable cell volume in hypertonic suspensions as a cause of freezing injury. In: Wolstenholme GEW, O’Connor M (eds) The frozen cell. J&A Churchill, London, pp 51–64Google Scholar
  49. 49.
    Steponkus PL, Lynch DV (1989) Freeze/thaw induced destabilisation of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21:21–41PubMedCrossRefGoogle Scholar
  50. 50.
    Pegg DE, Diaper MP (1983) The packing effect in erythrocyte freezing. Cryo-Letters 4:129–136Google Scholar
  51. 51.
    De Loecker W, Koptelov VA, Grishenko VI, De Loecker P (1996) Effects of cell concentration on viability and metabolic activity during cryopreservation. Cryobiology 37:103–109CrossRefGoogle Scholar
  52. 52.
    Kruuv J (1986) Effects of pre and post-thaw cell-to-cell contact and trypsin on survival of freeze-thaw damaged mammalian cells. Cryobiology 23:126–133PubMedCrossRefGoogle Scholar
  53. 53.
    Wells JR, Sullivan A, Cline MJ (1979) A technique for the separation and cryopreservation of myeloid stem cells from human bone marrow. Cryobiology 16:201–210PubMedCrossRefGoogle Scholar
  54. 54.
    Rall WF, Polge C (1984) Effect of warming rate on mouse embryos frozen and thawed in glycerol. J Reprod Fertil 70:285–292PubMedCrossRefGoogle Scholar
  55. 55.
    Pegg DE, Diaper MP, Skaer HL, Hunt CJ (1984) The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of M glycerol. Cryobiology 21:491–502PubMedCrossRefGoogle Scholar
  56. 56.
    Morris J, Acton E (2013) Controlled ice nucleation in cryopreservation: a review. Cryobiology 66(2):85–92PubMedCrossRefGoogle Scholar
  57. 57.
    Lauterboeck L, Hofmann N, Mueller T, Glasmacher B (2015) Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells. Cryobiology 71:384–390PubMedCrossRefGoogle Scholar
  58. 58.
    Ware CB, Nelson AM, Blau CA (2005) Controlled-rate freezing of human ES cells. Biotechniques 38:879–883PubMedCrossRefGoogle Scholar
  59. 59.
    Yang PF, Hua TC, Wu J et al (2006) Cryopreservation of human embryonic stem cells: a protocol by programmed cooling. Cryo Letters 27:361–368PubMedGoogle Scholar
  60. 60.
    Massie I, Selden C, Hodgson H, Fuller B (2011) Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent injury using an ice nucleating agent. Tissue Eng Part C Methods 17:765–774PubMedCrossRefGoogle Scholar
  61. 61.
    Katkov II, Kan NG, Cimadamore F et al (2011) DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int 2011:981606PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666–676PubMedCrossRefGoogle Scholar
  63. 63.
    Lovelock JE, Bishop M (1959) Prevention of freezing injury to cells by dimethyl sulphoxide. Nature 183:1394–1395PubMedCrossRefGoogle Scholar
  64. 64.
    Lovelock JE (1953) The mechanism of the protective effect of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36PubMedCrossRefGoogle Scholar
  65. 65.
    Pegg DE (1984) Red cell volume in glycerol/sodium chloride/water mixtures. Cryobiology 21:234–239PubMedCrossRefGoogle Scholar
  66. 66.
    Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331PubMedCrossRefGoogle Scholar
  67. 67.
    Stolzing A, Naaldijk Y, Fedorova V, Sethe S (2012) Hydroxyethylstarch in cryopreservation – mechanism, benefits and problems. Transfus Apher Sci 46:137–147PubMedCrossRefGoogle Scholar
  68. 68.
    T’Joen V, De Grande L, Declercq H, Cornelissen M (2012) An efficient, economical slow-freezing method for large-scale human embryonic stem cell banking. Stem Cells Dev 21:721–728PubMedCrossRefGoogle Scholar
  69. 69.
    Armitage WJ, Juss BK (1996) Osmotic response of mammalian cells: effects of permeating cryoprotectants on nonsolvent volume. J Cell Physiol 168:532–538PubMedCrossRefGoogle Scholar
  70. 70.
    Pegg DE, Hunt CJ, Fong LP (1987) Osmotic properties of the rabbit corneal endothelium and their relevance to cryopreservation. Cell Biophys 10:169–189PubMedCrossRefGoogle Scholar
  71. 71.
    Rubinstein P, Dobrila L, Rosenfield RE et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hanslick JL, Lau K, Noguchi KK et al (2009) Dimethyl sulphoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis 34:1–10PubMedCrossRefGoogle Scholar
  73. 73.
    Adler S, Pellizzer C, Paparella M, Hartung T, Bremer S (2006) The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro 20:265–271PubMedCrossRefGoogle Scholar
  74. 74.
    Koike M, Ishino K, Kohno Y et al (1996) DMSO induces apoptosis in SV40-transformed human keratinocytes, but not in normal keratinocytes. Cancer Lett 108:185–193PubMedCrossRefGoogle Scholar
  75. 75.
    Iwatani M, Ikegami K, Kremenska Y et al (2006) Dimethyl sulphoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 24:2549–2556PubMedCrossRefGoogle Scholar
  76. 76.
    Rowley SD, Anderson GL (1993) Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant 11:389–393PubMedGoogle Scholar
  77. 77.
    Rall WF (1987) Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402PubMedCrossRefGoogle Scholar
  78. 78.
    Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? review on vitrification. Reprod Biomed Online 12:779–796PubMedCrossRefGoogle Scholar
  79. 79.
    Fahy GM, Wowks B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35PubMedCrossRefGoogle Scholar
  80. 80.
    Farrent J (1965) Mechanism of cell damage during freezing and thawing and its prevention. Nature 205:1284–1287CrossRefGoogle Scholar
  81. 81.
    Elford BC, Walter CA (1972) Effects of electrolyte composition and pH on the structural function of smooth muscle cooled to −79 °C in unfrozen media. Cryobiology 9:82–100PubMedCrossRefGoogle Scholar
  82. 82.
    Pegg DE, Wang L, Vaughan D (2006) Cryopreservation of articular cartilage. Part 3: The liquidus-tracking method. Cryobiology 52:360–368PubMedCrossRefGoogle Scholar
  83. 83.
    Moon JE, Lee JR, Jee BC et al (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23:1760–1770PubMedCrossRefGoogle Scholar
  84. 84.
    Kurata H, Takakuwa K, Tanaka K (1994) Vitrification of hematopoietic progenitor cells obtained from human cord blood. Bone Marrow Transplant 14:261–263PubMedGoogle Scholar
  85. 85.
    Hunt CJ, Timmons PM (2007) Cryopreservation of human embryonic stem cell lines. In: Day JG, Stacey G (eds) Cryopreservation and Freeze Drying Protocols, Methods in Molecular Biology, vol 368. Humana Press, Totowa, pp 261–270CrossRefGoogle Scholar
  86. 86.
    Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194PubMedCrossRefGoogle Scholar
  87. 87.
    Zhou CQ, Mai QY, Li T, Zhaung GJ (2004) Cryopreservation of human embryonic stem cells by vitrification. Chin Med J (Engl) 117:1050–1055Google Scholar
  88. 88.
    Richards M, Fong CY, Tan S et al (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789PubMedCrossRefGoogle Scholar
  89. 89.
    Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedCrossRefGoogle Scholar
  90. 90.
    Li T, Zhou C, Liu C et al (2008) Bulk vitrification of human embryonic stem cells. Hum Reprod 23:358–364PubMedCrossRefGoogle Scholar
  91. 91.
    Li T, Mai Q, Gao J, Zhou C (2010) Cryopreservation of human embryonic stem cells with a bulk vitrification method. Biol Reprod 82:848–853PubMedCrossRefGoogle Scholar
  92. 92.
    Heng BC, Bested SM, Chan SW, Cao T (2005) A proposed design for the cryopreservation of intact and adherent human embryonic stem cell colonies. In Vitro Cell Biol Dev Anim 41:77–79CrossRefGoogle Scholar
  93. 93.
    Neubauer JC, Geijsen N, Zimmermann H (2015) Efficient cryopreservation of human pluripotent stem cells by surface-based vitrification. Methods Mol Biol 1257:321–328PubMedCrossRefGoogle Scholar
  94. 94.
    Malpique R, Beier AFJ, Serra M et al (2012) Surface-based cryopreservation for human embryonic stem cells: a comparative study. Biotechnol Prog 28:1079–1087PubMedCrossRefGoogle Scholar
  95. 95.
    McBurnie LD, Bardo B (2002) Validation of sterile filtration of liquid nitrogen. Pharm Tech:74–82Google Scholar
  96. 96.
    Mazzilli F, Delfino M, Imbrogno N et al (2006) Survival of micro-organisms in cryostorage of human sperm. Cell Tissue Bank 7:75–79PubMedCrossRefGoogle Scholar
  97. 97.
    Mirabet V, Alvarez M, Solves P et al (2012) Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants. Cryobiology 64:121–123PubMedCrossRefGoogle Scholar
  98. 98.
    Hawkins AE, Zuckerman MA, Briggs M et al (1996) Hepatitis B transmission nucleotide sequence analysis: linking an outbreak of acute hepatitis B to contamination of a cryopreservation tank. J Virol Methods 60:81–88PubMedCrossRefGoogle Scholar
  99. 99.
    Dinnyés A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63:513–518PubMedCrossRefGoogle Scholar
  100. 100.
    Aerts JM, De Clercq JB, Andries S, Leroy JL, Van Aelst S, Bols PE (2008) Follicle survival and growth to antral stages in short-term murine ovarian cortical transplants after cryologic solid surface vitrification or slow-rate freezing. Cryobiology 57:163–169PubMedCrossRefGoogle Scholar
  101. 101.
    Beebe LF, Bouwman EG, Mcllfatrick SM, Nottle MB (2011) Piglets produced from in vivo blastocysts vitrified using the cryologic vitrification method (solid surface vitrification) and a sealed storage container. Theriogenology 75:1453–1458PubMedCrossRefGoogle Scholar
  102. 102.
    Vajta G, Holm P, Kuwayama M et al (1999) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58CrossRefGoogle Scholar
  103. 103.
    Kuleshova LL, Shaw JM (2000) A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum Reprod 15:2604–2609PubMedCrossRefGoogle Scholar
  104. 104.
    Kuleshova LL, Tan FCK, Magalhaes R et al (2009) Effective cryopreservation of neural stem and progenitor cells without serum or proteins by vitrification. Cell Transplant 18:135–144PubMedCrossRefGoogle Scholar
  105. 105.
    Desai N, Xu J, Tsulaia T et al (2011) Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential. J Assist Reprod Genet 28:93–99PubMedCrossRefGoogle Scholar
  106. 106.
    Nishigaki T, Teruma Y, Suemori H, Iwata H (2010) Cryopreservation of primate embryonic stem cells with chemically-defined solutions without DMSO. Cryobiology 60:159–164PubMedCrossRefGoogle Scholar
  107. 107.
    Nishigaki T, Teruma Y, Nasu A et al (2001) Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulphoxide-free solution. Int J Dev Biol 55:305–311CrossRefGoogle Scholar
  108. 108.
    Mitchell PD, Ratcliffe E, Hourd P et al (2014) A quality-by-design approach to risk reduction and optimization for human embryonic stem cell cryopreservation processes. Tissue Eng Part C Methods 20:941–950PubMedCrossRefGoogle Scholar
  109. 109.
    Hunt CJ, Pegg DE, Armitage SE (2006) Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical cord blood. Cryo Letters 27:73–85PubMedGoogle Scholar
  110. 110.
    Kashuba Benson CM, Benson JD, Critser JK (2008) An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology 56:120–130PubMedCrossRefGoogle Scholar
  111. 111.
    Kashuba CM, Benson JD, Critser JK (2014) Rationally optimised cryopreservation of multiple mouse embryonic stem cell lines: I - comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology 68:166–175PubMedCrossRefGoogle Scholar
  112. 112.
    Xu Y, Zhang L, Xu J et al (2014) Membrane permeability of the human pluripotent stem cells to Me2SO, glycerol and 1,2-propanediol. Arch Biochem Biophys 550-551:67–76PubMedCrossRefGoogle Scholar
  113. 113.
    Ha YS, Jee BC, Suh CS et al (2005) Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum Reprod 20:1779–1785PubMedCrossRefGoogle Scholar
  114. 114.
    Heng BC, Kuleshova LL, Bested SM et al (2005) The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem 41:97–104PubMedCrossRefGoogle Scholar
  115. 115.
    Li Y, Tan J, Li L (2010) Comparison of three methods for cryopreservation of human embryonic stem cells. Fertil Steril 93:999–1005PubMedCrossRefGoogle Scholar
  116. 116.
    Lee JY, Lee JE, Kim DK et al (2010) High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells. Fertil Steril 93:976–985PubMedCrossRefGoogle Scholar
  117. 117.
    Crook JM, Peura TT, Kravets L et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494PubMedCrossRefGoogle Scholar
  118. 118.
    Ware CB, Baran SW (2007) A controlled-cooling protocol for cryopreservation of human and non-human primate embryonic stem cells. Methods Mol Biol 407:43–49PubMedCrossRefGoogle Scholar
  119. 119.
    Kashuba CM, Benson JD, Critser JK (2014) Rationally optimised cryopreservation of multiple mouse embryonic stem cell lines: II - mathematical prediction and experimental validation of optimal cryopreservation protocols. Cryobiology 68:166–175PubMedCrossRefGoogle Scholar
  120. 120.
    Orellana MD, De Santis GC, Abraham KJ et al (2015) Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 71:151–160PubMedCrossRefGoogle Scholar
  121. 121.
    Lin PY, Yang YC, Hung SH et al (2013) Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field. Cryobiology 66:256–260PubMedCrossRefGoogle Scholar
  122. 122.
    Morris GJ, Acton E, Faszer K et al (2006) Cryopreservation of murine embryos, human spermatozoa and embryonic stem cells using a liquid nitrogen-free, controlled rate freezer. Reprod Biomed Online 13:421–426PubMedCrossRefGoogle Scholar
  123. 123.
    Massie I, Selden C, Hodgson H et al (2014) GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods 20:693–702PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wong RCB, Pebay A, Nguyen LTV et al (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22:883–889PubMedCrossRefGoogle Scholar
  125. 125.
    De Maio A, Vega VL, Contreras JE (2002) Gap junctions, homeostasis and injury. J Cell Physiol 191:269–282PubMedCrossRefGoogle Scholar
  126. 126.
    Wong RCB, Pera MF, Pebay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4:283–292PubMedCrossRefGoogle Scholar
  127. 127.
    Irimia D, Karlsson JO (2002) Kinetics and mechanisms of intracellular ice propagation in a micropatterned tissue construct. Biophys J 82:1858–1868PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Toner M, Cravalho EG, Karel M (1991) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593CrossRefGoogle Scholar
  129. 129.
    Skorobogatova NG, Novikov AN, Fuller BJ, Petrenko AY (2010) Importance of a three-stage cooling regime and induced nucleation during cryopreservation on the colony-forming potential and differentiation in mesenchymal stem/progenitor cells from human fetal liver. Cryo Letters 31:371–379PubMedGoogle Scholar
  130. 130.
    Ji L, de Pablo J, Palacek SP (2004) Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng 88:299–312PubMedCrossRefGoogle Scholar
  131. 131.
    Serra M, Correia C, Malpique R et al (2011) Microencapsulation Technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6:–e23132Google Scholar
  132. 132.
    Nie Y, Bergendahl V, Hei DJ et al (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sambu S, Xu X, Schiffer HA et al (2011) RGDS-functionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation. Cryo Letters 32:389–401PubMedGoogle Scholar
  134. 134.
    Valbuena D, Sanchez-Luengo S, Galan A et al (2008) Efficient method for slow cryopreservation of human embryonic stem cells in xeno-free conditions. RBM Online 17:127–135PubMedGoogle Scholar
  135. 135.
    Xu X, Liu Y, Cui Z, Wei Y, Zhang L (2012) Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol 162(2–3):224–231PubMedCrossRefGoogle Scholar
  136. 136.
    Woods EJ, Liu J, Pollok K et al (2003) A theoretically-optimised method for cord blood stem cell cryopreservation. J Hematother Stem Cell Res 12:341–350PubMedCrossRefGoogle Scholar
  137. 137.
    Berz D, McCormack EM, Winer ES et al (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82:463–472PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Ock S-A, Rho G-J (2011) Effect of dimethyl sulphoxide on cryopreservation of porcine mesenchymal cells (pMSCs). Cell Transplant 20:1231–1239PubMedCrossRefGoogle Scholar
  139. 139.
    Abrahamsen JF, Bakken AM, Bruserved Ø (2002) Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42:1573–1580PubMedCrossRefGoogle Scholar
  140. 140.
    Xu X, Cowley S, Flaim CJ et al (2010) Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol Prog 26:781–788PubMedCrossRefGoogle Scholar
  141. 141.
    Imaizumi K, Iha M, Nishishita N et al (2016) A simple and efficient method of slow freezing for human embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol 1341:15–24Google Scholar
  142. 142.
    T’Joen V, Cornelissen R (2012) Xeno-free plant-derived hydrolysate-based freezing of human embryonic stem cells. Stem Cells Dev 21:17161725Google Scholar
  143. 143.
    Dash SN, Routray P, Dash C et al (2008) Use of the non-toxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Curr Stem Cell Res Ther 3:277–287PubMedCrossRefGoogle Scholar
  144. 144.
    Wu CF, Tsung HC, Zhang WJ et al (2005) Improved cryopreservation of human embryonic stem cells with trehalose. Reprod Biomed Online 11:733–739PubMedCrossRefGoogle Scholar
  145. 145.
    Lui Y, Xu X, Ma X et al (2010) Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethyl sulphoxide and well-defined freezing solutions. Biotechnol Prog 26:1635–1643CrossRefGoogle Scholar
  146. 146.
    Sharma S, Szurek EA, Rzucidio JS et al (2011) Cryobanking of embryoid bodies to facilitate basic research and cell based therapies. Rejuvenation Res 14:641–649PubMedCrossRefGoogle Scholar
  147. 147.
    Xu Y, Zhang L, Xu J et al (2015) Sensitivity of human embryonic stem cells to different conditions during cryopreservation. Cryobiology 71:486–492PubMedCrossRefGoogle Scholar
  148. 148.
    Matsumura K, Hyon S (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849PubMedCrossRefGoogle Scholar
  149. 149.
    Matsumura K, Bae JY, Kim HH, Hyon SH (2011) Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-L-lysine. Cryobiology 63:76–83PubMedCrossRefGoogle Scholar
  150. 150.
    Ota A., Matsumura K., Lee J-J et al. (2016) StemCell Keep™ is effective for cryopreservation of human embryonic stem cells by vitrification. Cell Transplant Doi: 10.3727/096368916X692654 Google Scholar
  151. 151.
    Grein TA (2010) Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells. Int J Artif Organs 33:370–380PubMedGoogle Scholar
  152. 152.
    Freimark D, Sehl C, Weber C et al (2011) Systematic parameter optimization of a ME2SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63:67–75PubMedCrossRefGoogle Scholar
  153. 153.
    Sun H, Glasmacher B, Hofmann N (2012) Compatible solutes improve cryopreservation of human endothelial cells. Cryo Letters 33:485–493PubMedGoogle Scholar
  154. 154.
    Baust JG, Gao D, Baust JM (2009) Cryopreservation an emerging paradigm change. Organogenesis 5:90–96PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    de Boer F, Dräger AM, Pinedo HM et al (2002) Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts. J Hematother Stem Cell Res 11:951–963PubMedCrossRefGoogle Scholar
  156. 156.
    Heng BC, Ye CP, Lui H et al (2006) Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperatures. Zygote 14:341–348PubMedCrossRefGoogle Scholar
  157. 157.
    Heng BC, Ye CP, Lui H et al (2006) Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 13:433–435PubMedCrossRefGoogle Scholar
  158. 158.
    Xu X, Cowley S, Flaim CJ et al (2009) The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol Prog 26:827–837CrossRefGoogle Scholar
  159. 159.
    Kim GA, Lee ST, Ahn JY et al (2010) Improved viability of freeze-thawed embryonic stem cells after exposure to glutathione. Fertil Steril 94:2409–2412PubMedCrossRefGoogle Scholar
  160. 160.
    Baust JM, Van Burskirk R, Baust JG (2000) Cell Viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 36:262–270PubMedCrossRefGoogle Scholar
  161. 161.
    Ladwig J, Koch P, Endl E et al (2008) Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells 26:1705–1712CrossRefGoogle Scholar
  162. 162.
    Heng BC, Clement MV, Cao T (2007) Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. Biosci Rep 27:257–264PubMedCrossRefGoogle Scholar
  163. 163.
    Seo JM, Sohn MY, Suh JS et al (2011) Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology 62:167–173PubMedCrossRefGoogle Scholar
  164. 164.
    Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20:22–248CrossRefGoogle Scholar
  165. 165.
    Kurosawa H (2012) Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells. J Biosci Bioeng 114:577–581PubMedCrossRefGoogle Scholar
  166. 166.
    Rizzino A (2010) Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors. Regen Med 5:799–807PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686PubMedCrossRefGoogle Scholar
  168. 168.
    Li X, Meng G, Krawetz R et al (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1086PubMedCrossRefGoogle Scholar
  169. 169.
    Li X, Krawetz R, Liu S et al (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24:580–589PubMedCrossRefGoogle Scholar
  170. 170.
    Martin-Ibañez R, Unger C, Strömberg A et al (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 23:2744–2754PubMedCrossRefGoogle Scholar
  171. 171.
    Barbaric I, Jones M, Buchner K et al (2011) Pinacidil enhances survival of cryopreserved human embryonic stem cells. Cryobiology 63(3):298–305PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang L, Xu Y, Xu J et al (2016) Protein kinase A inhibitor, H89, significantly enhances survival rate of dissociated human embryonic stem cells following cryopreservation. Cell Prolif 49:589–598Google Scholar
  173. 173.
    Ichikawa H, Nakata N, Abo Y et al (2012) Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 64:12–22PubMedCrossRefGoogle Scholar
  174. 174.
    Krawetz RJ, Li X, Rancourt DE (2009) Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. Bioessays 31:336–343PubMedCrossRefGoogle Scholar
  175. 175.
    Gauthaman K, Fong CY, Subramanian A et al (2010) ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton's jelly stem cells after cryopreservation. Stem Cell Rev 6:665–676PubMedCrossRefGoogle Scholar
  176. 176.
    Claassen DA, Desler MM, Rizzino A (2009) ROCK inhibition enhances the recovery and growth of cryopreserved human stem cells and human induced pluripotent stem cells. Mol Reprod Dev 76:722–732PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S (2010) An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc 5:588–594PubMedCrossRefGoogle Scholar
  178. 178.
    Bueno C, Montes R, Memendez P (2010) The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34+HSPCs. Stem Cell Rev 6:215–223PubMedCrossRefGoogle Scholar
  179. 179.
    Heng BC (2009) Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue Cell 41:376–380PubMedCrossRefGoogle Scholar
  180. 180.
    Couture LA (2010) Scalable pluripotent stem cell culture. Nat Biotechnol 28:562–563PubMedCrossRefGoogle Scholar
  181. 181.
    Katkov II, Kim MS, Bajpai R et al (2006) Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 53:194–205PubMedCrossRefGoogle Scholar
  182. 182.
    Wagh V, Meganathan K, Jagtap S et al (2011) Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev 7:506–517PubMedCrossRefGoogle Scholar
  183. 183.
    Chen HI, Tsai CD, Wang HT, Hwang SM (2006) Cryovial with partial membrane sealing can prevent liquid nitrogen penetration in submerged storage. Cryobiology 53:283–287PubMedCrossRefGoogle Scholar
  184. 184.
    Woods EJ, Thirumala S (2011) Packing considerations for biopreservation. Transfus Med Hemother 38:149–156PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Woods EJ, Bagchi A, Goebel WS et al (2010) Container systems for enabling commercial production of cryopreserved cell therapy products. Regen Med 5:659–667PubMedCrossRefGoogle Scholar
  186. 186.
    Amps KJ, Jones M, Baker D, Moore HD (2010) In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice. Cryobiology 60:344–350PubMedCrossRefGoogle Scholar
  187. 187.
    McCullough J, Haley R, Clay M et al (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50:808–829PubMedCrossRefGoogle Scholar
  188. 188.
    Hunt CJ, Song YC, Bateson EA, Pegg DE (1994) Fractures in cryopreserved arteries. Cryobiology 31:506–515PubMedCrossRefGoogle Scholar
  189. 189.
    Rall WF, Mazur TK (1989) Zona fracture damage and its avoidance during cryopreservation of mammalian embryos. Theriogenology 31:683–692PubMedCrossRefGoogle Scholar
  190. 190.
    Tomlinson M, Sakkas D (2000) Is a review of standard procedures for cryopreservation needed? Safe and effective cryopreservation – should sperm banks and fertility centres move toward storage in nitrogen vapour? Hum Reprod 15:2460–2463PubMedCrossRefGoogle Scholar
  191. 191.
    Rowley SD, Byrne DV (1992) Low-temperature storage of bone marrow in nitrogen vapour-phase refrigerators: decreased temperature gradients with an aluminium racking system. Transfusion 32:750–754PubMedCrossRefGoogle Scholar
  192. 192.
    Hunt CJ, Pegg DE (1996) Improved temperature stability in gas phase nitrogen refrigerators: the use of a copper heat shunt. Cryobiology 33:544–551CrossRefGoogle Scholar
  193. 193.
    Bielanski A (2005) Non-transmission of bacterial and viral microbes to embryos and semen stored in the vapour phase of liquid nitrogen in dry shippers. Cryobiology 50:206–210PubMedCrossRefGoogle Scholar
  194. 194.
    Bielanski A (2005) Experimental microbial contamination and disinfection of dry (vapour) shipper dewars designed for short-term storage and transportation of cryopreserved germplasm and other biological specimens. Theriogenology 63:1964–1957CrossRefGoogle Scholar
  195. 195.
    Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381PubMedCrossRefGoogle Scholar
  196. 196.
    De Sousa PA, Downie JM, Tye BJ et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17:379–390Google Scholar
  197. 197.
    Canham MA, Van Deusen A, Brison DR et al (2015) The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 5:17258. doi: 10.1038/srep17258 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Bergstrom R, Strom S, Holm F, Hovatta O (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136PubMedCrossRefGoogle Scholar
  199. 199.
    Nishishita N, Muramatsu M, Kawamata S (2015) An effective freezing/thawing method for human pluripotent stem cells cultures in chemically-defined and feeder-free conditions. Am J Stem Cells 4:38–49PubMedPubMedCentralGoogle Scholar
  200. 200.
    De Sousa PA, Tye BJ, Bruce K et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC12). Stem Cell Res 16:770–775Google Scholar
  201. 201.
    Miyazaki T, Nakatsuji N, Suemori H (2014) Optimization of slow cooling cryopreservation of human pluripotent stem cells. Genesis 52:49–55PubMedCrossRefGoogle Scholar
  202. 202.
    Liu W, Chen G (2014) Cryopreservation of human pluripotent stem cells in defined medium. Curr Protoc Stem Cell Biol 31(1C.17):1–13Google Scholar
  203. 203.
    Meng G, Poon A, Liu S, Rancourt DE (2016) An effective and reliable xeno-free cryopreservation protocol for single human pluripotent stem cells. Methods Mol Biol 1516:47–56Google Scholar
  204. 204.
    Li Y, Ma T (2012) Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access 1:205–214PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Andrews PW, Baker D, Benvenisty B et al (2015) Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 10(2 Suppl):1–44PubMedCrossRefGoogle Scholar
  206. 206.
    Stacey GN, Healy L, Man J et al (2017) Fundamental points to consider in the cryopreservation and shipment of cells for human application. In: Connon CJ (ed) Bioprocessing for Cell Based Therapies. John Wiley &Sons Ltd, pp 167–185Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.UK Stem Cell BankNational Institute for Biological Standards and ControlHertfordshireUK

Personalised recommendations