Acquisition and Reception of Primary Tissues, Cells, or Other Biological Specimens

  • Lyn E. HealyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1590)


The use and banking of biological material for research or clinical application is a well-established practice. The material can be of human or non-human origin. The processes involved in this type of activity, from the sourcing to receipt of materials, require adherence to a set of best practice principles that assure the ethical and legal procurement, traceability, and quality of materials.

Key words

Tissue Cells Biospecimens Procurement Consent Quality Best practice 



The author would like to thank the Medical Research Council (MRC), the Biotechnology and Biological Research Council (BBSRC), the Technology Strategy Board (TSB) the EU Framework 7 programme projects; Embryonic Stem cell-based Novel Alternative Testing Strategies (ESNATS), Stem cells for relevant efficient extended and normalized toxicology (SCR&TOX), ToxBank and the International Stem Cell Forum for supporting the activities of the UK Stem Cell Bank.


  1. 1.
    Stacey G (2012) Banking stem cells for research and clinical applications. Prog Brain Res 200:41–58CrossRefPubMedGoogle Scholar
  2. 2.
    Healy L, Young L, Stacey GN (2011) Stem cell banks: preserving cell lines, maintaining genetic integrity, an advancing research. Methods Mol Biol 767:15–27CrossRefPubMedGoogle Scholar
  3. 3.
    Diaferia GR, Cardano M, Cattaneo M et al (2012) The science of stem cell biobanking: investing in the future. J Cell Physiol 227:14–19CrossRefPubMedGoogle Scholar
  4. 4.
    European directive for the quality of medicines and healthcare (EDQM)(2015) Guide to the quality and safety of tissues and cells for human application 2nd EditonGoogle Scholar
  5. 5.
    Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30:55–60CrossRefPubMedGoogle Scholar
  6. 6.
    Focosi D, Pistello M (2016) Effect of induced pluripotent stem cell technology in blood banking. Stem Cells Transl Med 5:269–274Google Scholar
  7. 7.
    Thirumala S, Goebel WS, Woods EJ (2009) Clinical grade adult stem cell banking. Organogenesis 5:143–154CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thirumala S, Goebel WS, Woods EJ (2013) Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 13:673–691CrossRefPubMedGoogle Scholar
  9. 9.
    Cooper K, Viswanathan C (2011) Establishment of a mesenchymal stem cell bank. Cytotherapy. doi: 10.4061/2011/905621 Google Scholar
  10. 10.
    Cavallo C, Cuomo C, Fantini S et al (2011) Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J Cell Biochem 112:1418–1430CrossRefPubMedGoogle Scholar
  11. 11.
    Radrizzani M, Soncin S, Lo Cicero V, Andriolo G, Bolis S, Turchetto L (2016) Quality control assays for clinical-grade human mesenchymal stromal cells: methods for ATMP release. Methods Mol Biol 1416:313–337Google Scholar
  12. 12.
    Collart-Dutilleul PY, Chaubron F, De Vos J, Cuisinier FJ (2015) Allogenic banking of dental pulp stem cells for innovative therapeutics. World J Stem Cells 7:1010–1021PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tirino V, Paino F, De Rosa A, Papaccio G (2012) Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods Mol Biol 879:443–163CrossRefPubMedGoogle Scholar
  14. 14.
    Fazzina R, Mariotti A, Procoli A, Fioravanti D, Iudicone P, Scambia G, Pierelli L, Bonanno G (2015) A new standardized clinical-grade protocol for banking human umbilical cord tissue cells. Transfusion 55:2864–2873CrossRefPubMedGoogle Scholar
  15. 15.
    Polchow B, Kebbel K, Schmiedeknecht G et al (2012) Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks. J Transl Med 10:98. doi: 10.1186/1479-5876-10-98 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li Y, Ma T (2012) Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. BioResearch Open Access 1:205–214CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caenazzo L, Tozzo P, Borovecki A (2015) Ethical governance in biobanks linked to electronic health records. Eur Rev Med Pharmacol Sci 19:4182–4186PubMedGoogle Scholar
  18. 18.
    Isasi RM, Knoppers BM (2009) Governing stem cell banks and registries: emerging issues. Stem Cell Res 3:96–105CrossRefPubMedGoogle Scholar
  19. 19.
    Knoppers BM, Isasi R (2010) Stem cell banking: between traceability and identifiability. Genome Med 2:73. doi: 10.1186/gm194 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Isasi R, Knoppers B (2011) From banking to International Governance: fostering innovation in stem cell research. Stem Cells Int. doi: 10.4061/2011/498132 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Isasi R, Knoppers BM, Andrews PW (2012) International stem cell forum ethics working party. Disclosure and management of research findings in stem cell research and banking: policy statement. Regen Med 7:439–448CrossRefPubMedGoogle Scholar
  22. 22.
    Harris JR, Burton P, Knoppers BM et al (2012) Toward a roadmap in global biobanking for health. Eur J Hum Genet 20:1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hug K (2009) Banks, repositories and registries of stem cell lines in Europe: regulatory and ethical aspects. Stem Cell Rev 5:18–35CrossRefPubMedGoogle Scholar
  24. 24.
    Marko-Varga G, Baker MS, Boja ES, Rodriguez H, Fehniger TE (2014) Biorepository regulatory frameworks: building parallel resources that both promote scientific investigation and protect human subjects. J Proteome Res 13:5319–5324CrossRefPubMedGoogle Scholar
  25. 25.
    Chalmers D, Nicol D, Kaye J et al (2016) Has the biobank bubble burst? Withstanding the challenges for sustainable biobanking in the digital era. BMC Med Ethics 17:39Google Scholar
  26. 26.
    Coecke S, Balls M, Bowe G et al (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice: a report of the second ECVAM task force on good cell culture practice. ATLA 33:261–287PubMedGoogle Scholar
  27. 27.
    Pamies D, Bal-Price A, Simeonov A et al. (2016). Good cell culture practice for stem cells and stem-cell-derived models. ALTEX Online first published August 23, 2016, version 3 10.14573/altex.1607121
  28. 28.
    The Organisation for Economic Co-operation and Development (OECD) (2007) Best Practice Guidelines for Biological Resource Centres.
  29. 29.
    The Organisation for Economic Co-operation and Development (OECD) (2009) Guidelines for Human Biobanks and Genetic Research Databases (HBGRDs).
  30. 30.
    International Society for Biological and Environmental Repositories (2012) Best practices for repositories collection, storage, retrieval, and distribution of biological materials for research. Biopreserv Biobank 10(2):79–161CrossRefGoogle Scholar
  31. 31.
    NCI best practices for biospecimen resources (2016)Google Scholar
  32. 32.
    Vaught J, Lockhart NC (2012) The evolution of biobanking best practices. Clin Chim Acta 413:1569–1575CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kellathur SN, Lou HX (2012) Cell and tissue therapy regulation: worldwide status and harmonization. Biologicals 40:222–224CrossRefPubMedGoogle Scholar
  34. 34.
    Ahrlund-Richter L, De Luca M, Marshak DR et al (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4:20–26CrossRefPubMedGoogle Scholar
  35. 35.
    British Standards Institute. Publicly Available Standard (PAS) 83 (2012) Developing human cells for clinical applications in the European Union and the United States of America–GuideGoogle Scholar
  36. 36.
    Petrini C (2010) "Broad" consent, exceptions to consent and the question of using biological samples for research purposes different from the initial collection purpose. Soc Sci Med 70:217–220CrossRefPubMedGoogle Scholar
  37. 37.
    Lomax GP, Hull SC, Lowenthal J et al (2013) The DISCUSS Project: induced pluripotent stem cell lines from previously collected research biospecimens and informed consent: points to consider. Stem Cells Transl Med 2:727–730CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    European Union Tissues and Cells Directives (EUTCD) (2004) Directive 2004/23/EC of the European Parliament and the Council of 31st March 2004 on setting standards of quality and safety for the donation, processing, preservation, storage and distribution of human tissues and cells. Off J Eur Union L102:48–58Google Scholar
  39. 39.
    European Association of Tissue Banks.
  40. 40.
    Warwick RM, Fehily D, Brubaker SA, Eastlund T (eds) (2009) Tissue and cell donation: an essential guide. Wiley-Blackwell, Chichester, UKGoogle Scholar
  41. 41.
    Petrini C (2014) European regulations and ethical issues on cord blood banking. In: Ilic D (ed) Stem cell banking. Part of the series stem cell biology and regenerative medicine. Springer, New York, pp 51–63Google Scholar
  42. 42.
    Petrini C (2012) European regulations on cord blood banking: an overview. Transfusion 52:668–679CrossRefPubMedGoogle Scholar
  43. 43.
    U.S. Department of Health & Human Services (2016) International Compilation of Human Research Standards. Compiled By: Office for Human Research Protections.
  44. 44.
    De Sousa PA, Galea G, Turner M (2006) The road to providing human embryo stem cells for therapeutic use: the UK experience. Reproduction 132:681–689CrossRefPubMedGoogle Scholar
  45. 45.
    Murdoch A, Braude P, Courtney A et al (2012) The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev 8:91–99CrossRefPubMedGoogle Scholar
  46. 46.
    International Society for Biological and Environmental Repositories (ISBER).
  47. 47.
    European Collection of Authenticated Cell Cultures (ECACC).
  48. 48.
    Geraghty RJ, Capes-Davis A, Davis JM et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111:1021–1046CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stacey G (2004) Fundamental issues for cell-line banks in biotechnology and regulatory affairs. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press LLC, Boca Raton, FL, pp 437–452Google Scholar
  50. 50.
    International Cell Line Authentication Committee (ICLAC).
  51. 51.
    Capes-Davis A, Neve RM (2016) Authentication: a standard problem or a problem of standards? PLoS Biol 14(6):e1002477Google Scholar
  52. 52.
    Kerrigan L, Nims RW (2011) Authentication of human cell-based products: the role of a new consensus standard. Regen Med 6:255–260CrossRefPubMedGoogle Scholar
  53. 53.
    Nims RW, Sykes G, Cottrill K, Ikonomi P, Elmore E (2010) Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim 46:811–819CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Capes-Davis A, Theodosopoulos G, Atkin I et al (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127:1–8CrossRefPubMedGoogle Scholar
  55. 55.
    Reid Y, Mintzer J (2012) The current state of cell contamination and authentication—and what it means for biobanks. Biopreserv Biobank 10:236–238CrossRefPubMedGoogle Scholar
  56. 56.
    Löser P, Schirm J, Guhr A et al (2010) Human embryonic stem cell lines and their use in international research. Stem Cells 282:40–46Google Scholar
  57. 57.
    Human pluripotent stem cell registry.
  58. 58.
    National Institutes of Health (NIH). Human Embryonic Stem Cell Registry.
  59. 59.
    Bahadur G, Morrison M, Machin L (2010) Beyond the 'embryo question': human embryonic stem cell ethics in the context of biomaterial donation in the UK. Reprod Biomed Online 21:868–874CrossRefPubMedGoogle Scholar
  60. 60.
    O'Rourke PP, Abelman M, Heffernan KG (2008) Centralized banks for human embryonic stem cells: a worthwhile challenge. Cell Stem Cell 2:307–312CrossRefPubMedGoogle Scholar
  61. 61.
    International stem cell forum.
  62. 62.
    International stem cell banking initiative (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314CrossRefGoogle Scholar
  63. 63.
    Franklin SB, Hunt C, Cornwell G et al (2008) hESCCO: development of good practice models for hES cell derivation. Regen Med 3:105–116CrossRefPubMedGoogle Scholar
  64. 64.
    Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53CrossRefPubMedGoogle Scholar
  65. 65.
    Crook JM, Peura TT, Kravets L et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494CrossRefPubMedGoogle Scholar
  66. 66.
    Tannenbaum SE, Turetsky TT, Singer O et al (2012) Derivation of xeno-free and GMP-grade human embryonic stem cells--platforms for future clinical applications. PLoS One 7(6):e35325. doi: 10.1371/journal.pone.0035325 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    De Sousa PA, Downie JM, Tye BJ et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17:379–390Google Scholar
  68. 68.
    Ilic D, Stephenson E, Wood V et al (2011) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Stem Cells Int 2011:905621. doi: 10.4061/2011/905621 Google Scholar
  69. 69.
    Andrews PW, Baker D, Benvinisty N (2015) Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: international stem cell banking initiative (ISCBI). Regen Med 10(2 Suppl):1–44CrossRefPubMedGoogle Scholar
  70. 70.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  71. 71.
    Okita K, Yamanaka S (2010) Induction of pluripotency by defined factors. Exp Cell Res 316:2565–2570CrossRefPubMedGoogle Scholar
  72. 72.
    Ma T, Xie M, Laurent T, Ding S (2013) Progress in the reprogramming of somatic cells. Circ Res 112:562–574CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rajasingh JO (2012) Reprogramming of somatic cells. Prog Mol Biol Transl Sci 111:51–82CrossRefPubMedGoogle Scholar
  74. 74.
    O'Doherty R, Greiser U, Wang W (2013) Nonviral methods for inducing pluripotency to cells. Biomed Res Int 2013:705902. doi: 10.1155/2013/705902 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Knoepfler P (2012) Key anticipated regulatory issues for clinical use of human induced pluripotent stem cells. Regen Med 7:713–720CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Nat Biotechnol 31:585–588CrossRefGoogle Scholar
  77. 77.
    Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30:350–359CrossRefPubMedGoogle Scholar
  78. 78.
    Ausubel LJ, Lopez PM, Couture LA (2011) GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol 767:147–159CrossRefPubMedGoogle Scholar
  79. 79.
    Bergström R, Ström S, Holm F et al (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136CrossRefPubMedGoogle Scholar
  80. 80.
    Simonson OE, Domogatskaya A, Volchkov P, Rodin S (2015) The safety of human pluripotent stem cells in clinical treatment. Ann Med 47:370–380CrossRefPubMedGoogle Scholar
  81. 81.
    Cao S, Loh K, Pei Y et al (2012) Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality. Protein Cell 3:834–845CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 366:2312–2322CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152CrossRefPubMedGoogle Scholar
  84. 84.
    Chang EA, Tomov ML, Suhr ST, Luo J, Olmsted ZT, Paluh JL, Cibelli J (2015) Derivation of ethnically diverse human induced pluripotent stem cell lines. Sci Rep 5:15234CrossRefPubMedGoogle Scholar
  85. 85.
    Stacey GN, Crook JM, Hei D, Ludwig T (2013) Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 13:385–388CrossRefPubMedGoogle Scholar
  86. 86.
    Luong MX, Auerbach J, Crook JM et al (2011) A call for standardized naming and reporting of human ESC and iPSC lines. Cell Stem Cell 8:357–859CrossRefPubMedGoogle Scholar
  87. 87.
    Association for Assessment and Accreditation of Laboratory Animal Care.
  88. 88.
    Wesselschmidt RL, Schwartz PH (2011) The stem cell laboratory: design, equipment, and oversight. Methods Mol Biol 767:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Inamdar MS, Healy L, Sinha A, Stacey G (2012) Global solutions to the challenges of setting up and managing a stem cell laboratory. Stem Cell Rev 8:830–843CrossRefPubMedGoogle Scholar
  90. 90.
    The International Air Transport Association IATA Infectious Substances Shipping Guidelines 13th Edition 2015/2016 IATA 2016 Dangerous Goods Regulations (DGR) 57th Edition.Google Scholar
  91. 91.
    WHO Guidance on regulations for the transport of infectious substances 2013–2014 WHO/HSE/GCR/2012.12Google Scholar
  92. 92.
    Matzke LA, Fombonne B, Watson PH, Moore HM (2016) Fundamental considerations for biobank legacy planning. Biopreserv Biobank 14:99–106Google Scholar
  93. 93.
    Somiari SB, Somiari RI (2016) Biobanking comes of age: the transition to biospecimen science. Annu Rev Pharmacol Toxicol 56:211–228Google Scholar
  94. 94.
    Vaught J (2015) The future of biobanking: a conceptual look at how biobanks can respond to the growing human biospecimen needs of researchers. Adv Exp Med Biol 864:11–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Francis Crick InstituteLondonUK

Personalised recommendations