Colorimetric Detection of Acetyl Xylan Esterase Activities

  • Galina Mai-Gisondi
  • Emma R. Master
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


Colorimetric detection of reaction products is typically preferred for initial surveys of acetyl xylan esterase (AcXE) activity. This chapter will describe common colorimetric methods, and variations thereof, for measuring AcXE activities on commercial, synthesized, and natural substrates. Whereas assays using pNP-acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate (4MUA) are emphasized, common methods used to measure AcXE activity towards carbohydrate analogs (e.g., acetylated p-nitrophenyl β-d-xylopyranosides) and various acetylated xylans are also described. Strengths and limitations of the colorimetric assays are highlighted.

Key words

Acetyl xylan esterase Colorimetric assays pNP-acetate α-Naphthyl acetate 4-Methylumbelliferyl acetate Acetylated xylooligosaccharides β-Xylosidase-coupled assay 



This work was supported by a grant to G.M. from Ella and Georg Ehrnrooth foundation, Finland and an ERC Consolidator Grant to E.M. (BHIVE—648925). We thank Professor M. Tenkanen for her critical review of the manuscript.


  1. 1.
    Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588. doi: 10.1016/j.biotechadv.2012.04.010 CrossRefPubMedGoogle Scholar
  2. 2.
    Alalouf O, Balazs Y, Volkinshtein M et al (2011) A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 286:41993–42001. doi: 10.1074/jbc.M111.301051 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  4. 4.
    Taylor EJ, Gloster TM, Turkenburg JP et al (2006) Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem 281:10968–10975. doi: 10.1074/jbc.M513066200 CrossRefPubMedGoogle Scholar
  5. 5.
    Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186:80–84. doi: 10.1016/0014-5793(85)81343-0 CrossRefGoogle Scholar
  6. 6.
    Johnson KG, Fontana JD, MacKenzie CR (1988) Measurement of acetylxylan esterase in Streptomyces. Methods Enzymol 160:551–560. doi: 10.1016/0076-6879(88)60168-6 CrossRefGoogle Scholar
  7. 7.
    Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:729–733PubMedPubMedCentralGoogle Scholar
  8. 8.
    Christakopoulos P, Mamma D, Kekos D et al (1999) Enhanced acetyl esterase production by Fusarium oxysporum. World J Microbiol Biotechnol 15:443–446. doi: 10.1023/A:1008936204368 CrossRefGoogle Scholar
  9. 9.
    Biely P, Côté G, Kremnický L et al (1996) Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates. Biochim Biophys Acta 1298:209–222. doi: 10.1016/S0167-4838(96)00132-X CrossRefPubMedGoogle Scholar
  10. 10.
    Lee H, To RJ, Latta RK et al (1987) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl Environ Microbiol 53:2831–2834PubMedPubMedCentralGoogle Scholar
  11. 11.
    Degrassi G, Okeke BC, Bruschi CV et al (1998) Purification and characterization of an acetyl xylan esterase from Bacillus pumilus. Appl Environ Microbiol 64:789–792PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chung HJ, Park SM, Kim HR et al (2002) Cloning the gene encoding acetyl xylan esterase from Aspergillus ficuum and its expression in Pichia pastoris. Enzyme Microb Technol 31:384–391. doi: 10.1016/S0141-0229(02)00122-9 CrossRefGoogle Scholar
  13. 13.
    Halgasová N, Kutejová E, Timko J (1994) Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J 298(Pt 3):751–755CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McDermid KP, Forsberg CW, Mackenzie CR (1990) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56:3805–3810. doi: 10.1016/j.enzmictec.2007.09.007 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Merino-Trigo A, Sampedro L, Rodrguez-Berrocal FJ et al (1999) Activity and partial characterisation of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes. Soil Biol Biochem 31:1735–1740. doi: 10.1016/S0038-0717(99)00092-9 CrossRefGoogle Scholar
  16. 16.
    Bauer S, Vasu P, Persson S et al (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci USA 103:11417–11422. doi: 10.1073/pnas.0604632103 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chungool W, Thongkam W, Raweesri P et al (2008) Production, purification, and characterization of acetyl esterase from Streptomyces sp. PC22 and its action in cooperation with xylanolytic enzymes on xylan degradation. World J Microbiol Biotechnol 24:549–556. doi: 10.1007/s11274-007-9509-1 CrossRefGoogle Scholar
  18. 18.
    Hespell RB, O’Bryan-Shah PJ (1988) Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol 54:1917–1922PubMedPubMedCentralGoogle Scholar
  19. 19.
    Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65:3990–3995PubMedPubMedCentralGoogle Scholar
  20. 20.
    Westlake K, Mackie RI, Dutton MF (1987) T-2 toxin metabolism by ruminal bacteria and its effect on their growth. Appl Environ Microbiol 53:587–592PubMedPubMedCentralGoogle Scholar
  21. 21.
    Navarro-Fernández J, Martínez-Martínez I, Montoro-García S et al (2008) Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J Bacteriol 190:1375–1382. doi: 10.1128/JB.01104-07 CrossRefPubMedGoogle Scholar
  22. 22.
    Neumueller KG, Streekstra H, Gruppen H et al (2014) Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. Bioresour Technol 163:64–73. doi: 10.1016/j.biortech.2014.04.001 CrossRefGoogle Scholar
  23. 23.
    Juturu V, Aust C, Wu J (2013) Heterologous expression and biochemical characterization of acetyl xylan esterase from Coprinopsis cinerea. World J Microbiol Biotechnol 29:597–605. doi: 10.1007/s11274-012-1215-y CrossRefPubMedGoogle Scholar
  24. 24.
    Koseki T, Furuse S, Iwano K et al (1997) An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326:485–490CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424CrossRefGoogle Scholar
  26. 26.
    Poutanen K, Sundberg M, Korte H et al (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510CrossRefGoogle Scholar
  27. 27.
    He X (2003) A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Arch Insect Biochem Physiol 54:68–76. doi: 10.1002/arch.10103 CrossRefPubMedGoogle Scholar
  28. 28.
    Garcia-Sastre A, Villar E, Manuguerra JC et al (1991) Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochem J 273(Pt2):435–441CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Biely P, Côté G, Kremnický L et al (1996) Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans. FEBS Lett 396:257–260. doi: 10.1016/0014-5793(96)01080-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Biely P, Mastihubová M, Côté GL et al (2003) Mode of action of acetylxylan esterase from Streptomyces lividans: a study with deoxy and deoxy-fluoro analogues of acetylated methyl β-d-xylopyranoside. Biochim Biophys Acta 1622:82–88. doi: 10.1016/S0304-4165(03)00130-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Horton D, Lauterback JH (1969) Relative reactivities of hydroxyl groups in carbohydrate derivatives. Specific NMR spectral assignments of acetyl groups in methyl tetra-O-acetyl-alpha-D-glucopyranoside and related derivatives. J Org Chem 34:86–92. doi: 10.1021/jo00838a021 CrossRefGoogle Scholar
  32. 32.
    Mastihubová M, Biely P (2001) A common access to 2- and 3-substituted methyl β-D-xylopyranosides. Tetrahedron Lett 42:9065–9067. doi: 10.1016/S0040-4039(01)01957-8 CrossRefGoogle Scholar
  33. 33.
    Mastihubová M, Biely P (2004) Deoxy and deoxyfluoro analogues of acetylated methyl beta-D-xylopyranoside-substrates for acetylxylan esterases. Carbohydr Res 339:2101–2110. doi: 10.1016/j.carres.2004.06.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Mastihubová M, Biely P (2004) Lipase-catalysed preparation of acetates of 4-nitrophenyl β-D-xylopyranoside and their use in kinetic studies of acetyl migration. Carbohydr Res 339:1353–1360. doi: 10.1016/j.carres.2004.02.016 CrossRefPubMedGoogle Scholar
  35. 35.
    Biely P, Mastihubová M, la Grange DC et al (2004) Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl beta-D-xylopyranosides. Anal Biochem 332:109–115. doi: 10.1016/j.ab.2004.04.022 CrossRefPubMedGoogle Scholar
  36. 36.
    Levisson M, Han GW, Deller MC et al (2012) Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 80:1545–1559. doi: 10.1002/prot.24041 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Biely P, Cziszárová M, Agger JW et al (2014) Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biochim Biophys Acta 1840:516–525. doi: 10.1016/j.bbagen.2013.10.008 CrossRefPubMedGoogle Scholar
  38. 38.
    Biely P, Cziszárová M, Uhliariková I et al (2013) Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochim Biophys Acta 1830:5075–5086. doi: 10.1016/j.bbagen.2013.07.018 CrossRefPubMedGoogle Scholar
  39. 39.
    Rantanen H, Virkki L, Tuomainen P et al (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-d-xylanase. Carbohydr Polym 68:350–359. doi: 10.1016/j.carbpol.2006.11.022 CrossRefGoogle Scholar
  40. 40.
    Pastell H, Tuomainen P, Virkki L et al (2008) Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 343:3049–3057. doi: 10.1016/j.carres.2008.09.013 CrossRefPubMedGoogle Scholar
  41. 41.
    Dalrymple BP, Cybinski DH, Layton I et al (1997) Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143:2605–2614. doi: 10.1099/00221287-143-8-2605 CrossRefPubMedGoogle Scholar
  42. 42.
    Pouvreau L, Jonathan MC, Kabel MA et al (2011) Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme Microb Technol 49:312–320. doi: 10.1016/j.enzmictec.2011.05.010 CrossRefPubMedGoogle Scholar
  43. 43.
    Martínez-Martínez I, Montoro-García S, Lozada-Ramírez JD et al (2007) A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate. Anal Biochem 369:210–217. doi: 10.1016/j.ab.2007.06.030 CrossRefPubMedGoogle Scholar
  44. 44.
    Cybinski DH, Layton I, Lowry JB et al (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52:221–225CrossRefPubMedGoogle Scholar
  45. 45.
    Chong SL, Virkki L, Maaheimo H et al (2014) O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 24:494–506. doi: 10.1093/glycob/cwu017 CrossRefPubMedGoogle Scholar
  46. 46.
    Uhliariková I, Vršanská M, McCleary BV et al (2013) Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study. Biochim Biophys Acta 1830:3365–3372. doi: 10.1016/j.bbagen.2013.01.011 CrossRefPubMedGoogle Scholar
  47. 47.
    Neumüller KG, de Souza AC, van Rijn JH et al (2015) Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides. Biotechnol Biofuels 8:1–11. doi: 10.1186/s13068-014-0187-6 CrossRefGoogle Scholar
  48. 48.
    Neumüller KG, de Souza AC, Van Rijn J et al (2013) Fast and robust method to determine phenoyl and acetyl esters of polysaccharides by quantitative 1H NMR. J Agric Food Chem 61:6282–6287. doi: 10.1021/jf401393c CrossRefPubMedGoogle Scholar
  49. 49.
    Biely P, Mastihubová M, Tenkanen M et al (2011) Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of β-D-xylopyranose and α-L-arabinofuranose. J Biotechnol 151:137–142. doi: 10.1016/j.jbiotec.2010.10.074 CrossRefPubMedGoogle Scholar
  50. 50.
    Biely P, Hirsch J, la Grange DC et al (2000) A chromogenic substrate for a beta-xylosidase-coupled assay of alpha-glucuronidase. Anal Biochem 286:289–294. doi: 10.1006/abio.2000.4810 CrossRefPubMedGoogle Scholar
  51. 51.
    Topakas E, Kyriakopoulos S, Biely P et al (2010) Carbohydrate esterases of family 2 are 6-O-deacetylases. FEBS Lett 584:543–548. doi: 10.1016/j.febslet.2009.11.095 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Bioproducts and BiosystemsAalto UniversityEspoo, AaltoFinland
  2. 2.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations