Quantitative Kinetic Characterization of Glycoside Hydrolases Using High-Performance Anion-Exchange Chromatography (HPAEC)

  • Nicholas McGregor
  • Gregory Arnal
  • Harry Brumer
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


High-performance anion-exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) is a powerful analytical technique enabling the high-resolution separation and sensitive quantification of oligosaccharides. Here, we describe a general method for the determination of glycoside hydrolase kinetics that harnesses the intrinsic power of HPAEC-PAD to simultaneously monitor the release of multiple products under conditions of low substrate conversion. Thus, the ability to track product release under initial-rate conditions with substrate concentrations as low as 5 μM enables the determination of Michaelis–Menten kinetics for glycosidase activities, including hydrolysis and transglycosylation. This technique may also be readily extended to other carbohydrate-active enzymes (CAZymes), including polysaccharide lyases, and glycosyl transferases.

Key words

Carbohydrate-active enzyme Kinetics Hydrolysis Transglycosylation HPLC HPAEC-PAD Oligosaccharide 



Funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) via the Strategic Partnership Grants for Networks (for the Industrial Biocatalysis Network) and Discovery Grant programs is gratefully acknowledged. Equipment infrastructure was funded by the Canada Foundation for Innovation and the British Columbia Knowledge Development Fund. We thank Kazune Tamura (Brumer group, UBC) for comments on an early version of this chapter.


  1. 1.
    Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  2. 2.
    Fushinobu S, Alves VD, Coutinho PM (2013) Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships. Curr Opin Struct Biol 23:652–659CrossRefPubMedGoogle Scholar
  3. 3.
    Hemsworth GR, Déjean G, Davies GJ, Brumer H (2016) Learning from microbial strategies for polysaccharide degradation. Biochem Soc Trans 44:94–108CrossRefPubMedGoogle Scholar
  4. 4.
    Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263CrossRefGoogle Scholar
  5. 5.
    Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol 18:527–533CrossRefPubMedGoogle Scholar
  6. 6.
    Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444CrossRefPubMedGoogle Scholar
  7. 7.
    Mewis K, Lenfant N, Lombard V, Henrissat B (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol 82(6):1686–1692CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562CrossRefPubMedGoogle Scholar
  10. 10.
    Rocklin RD, Clarke AP, Weitzhandler M (1998) Improved long-term reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform. Anal Chem 70:1496–1501CrossRefGoogle Scholar
  11. 11.
    Rocklin RD, Pohl CA (1983) Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J Liq Chromatogr 6:1577–1590CrossRefGoogle Scholar
  12. 12.
    Corradini C, Cavazza A, Bignardi C, Corradini C, Cavazza A and Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012: e487564Google Scholar
  13. 13.
    Eklöf JM, Ruda MC, Brumer H (2012) Distinguishing xyloglucanase activity in endo-β(1→4)glucanases. Methods Enzymol 510:97–120CrossRefPubMedGoogle Scholar
  14. 14.
    van Munster JM, Sanders P, ten Kate GA, Dijkhuizen L, van der Maarel MJEC (2015) Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydr Res 407:73–78CrossRefPubMedGoogle Scholar
  15. 15.
    Rothenhöfer M, Grundmann M, Bernhardt G, Matysik F-M, Buschauer A (2015) High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) for the sensitive determination of hyaluronan oligosaccharides. J Chromatogr B 988:106–115CrossRefGoogle Scholar
  16. 16.
    Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M et al (2007) Structural evidence for the evolution of Xyloglucanase activity from Xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Larsbrink J, Izumi A, Ibatullin Farid M, Nakhai A, Gilbert Harry J, Davies Gideon J et al (2011) Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J 436:567–580CrossRefPubMedGoogle Scholar
  18. 18.
    Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H (2014) A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol 94(2):418–433CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H (2012) Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-Transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 287:43288–43299CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McGregor N, Morar M, Fenger TH, Stogios P, Lenfant N, Yin V et al (2016) Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal Bacteroidetes Prevotella bryantii B14. J Biol Chem 291:1175–1197Google Scholar
  21. 21.
    Stoll VS, Blanchard JS (2009) Chapter 6 buffers: principles and practice. In: Deutscher MP, Burgess RR (eds) Methods enzymol. Academic Press, Cambridge, MA, pp 43–56Google Scholar
  22. 22.
    Deutscher MP (1990) Maintaining protein stability. In: Deutscher MP (ed) Guide to protein purification. Academic Press, Cambridge, MA, pp 83–89.Google Scholar
  23. 23.
    Cornish-Bowden A (2012) Practical aspects of kinetics. In: Fundamentals of enzyme kinetics. Portland Press Ltd, London, pp 85–106Google Scholar
  24. 24.
    Zhang Y, Inoue Y, Inoue S, Lee YC (1997) Separation of oligo/polymers of 5-N-acetylneuraminic Acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector. Anal Biochem 250:245–251CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Nicholas McGregor
    • 1
    • 2
  • Gregory Arnal
    • 1
  • Harry Brumer
    • 1
    • 2
    • 3
  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations