Simultaneous Membrane Capacitance Measurements and TIRF Microscopy to Study Granule Trafficking at Immune Synapses

  • Marwa Sleiman
  • David R. Stevens
  • Jens RettigEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1584)


Whole-cell capacitance measurements allow the direct measurement of exocytosis with high temporal resolution. An added benefit of the whole-cell configuration is the possibility to control the cytosolic free calcium concentration allowing examination of the role of intracellular calcium in a variety of processes. We have coupled this method with imaging of cytotoxic granule release using total internal reflection fluorescence microscopy (TIRFM) to identify the capacitance steps associated with cytotoxic granule release identified by TIRFM. This requires the use of fluorescent granule markers to identify cytotoxic granules and allows characterization of cytotoxic granule fusion and of the behavior of cytotoxic granules at the immune synapse prior to fusion. Combination of these methods enables the study of a number of processes relevant to the function of the immune synapse.

Key words

Capacitance measurements TIRF microscopy Cytotoxic T lymphocytes Cytotoxic granules Exocytosis 



Work in our lab was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 894 to JR).


  1. 1.
    de Saint Basile G, Menasche G, Fischer A (2010) Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 10:568–579CrossRefPubMedGoogle Scholar
  2. 2.
    Page LJ, Darmon AJ, Uellner R et al (1998) L is for lytic granules: lysosomes that kill. Biochim Biophys Acta 1401:146–156CrossRefPubMedGoogle Scholar
  3. 3.
    Stinchcombe JC, Page LJ, Griffiths GM (2000) Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients. Traffic 1:435–444CrossRefPubMedGoogle Scholar
  4. 4.
    Oheim M, Loerke D, Stühmer W et al (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98CrossRefPubMedGoogle Scholar
  5. 5.
    Oheim M, Stühmer W (2000) Interaction of secretory organelles with the membrane. J Membr Biol 178:163–173CrossRefPubMedGoogle Scholar
  6. 6.
    Martina JA, Wu XS, Catalfamo M et al (2011) Imaging of lytic granule exocytosis in CD8+ cytotoxic T lymphocytes reveals a modified form of full fusion. Cell Immunol 271:267–279CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pasche M, Matti U, Hof D et al (2012) Docking of LDCVs is modulated by lower intracellular [Ca2+] than priming. PLoS One 7:e36416CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schwarz EC, Kummerow C, Wenning AS et al (2007) Calcium dependence of T cell proliferation following focal stimulation. Eur J Immunol 37:2723–2733CrossRefPubMedGoogle Scholar
  9. 9.
    Pattu V, Qu B, Marshall M et al (2011) Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 12:890–901CrossRefPubMedGoogle Scholar
  10. 10.
    Lindau M (2012) High resolution electrophysiological techniques for the study of calcium-activated exocytosis. Biochim Biophys Acta 1820:1234–1242CrossRefPubMedGoogle Scholar
  11. 11.
    Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453–455CrossRefPubMedGoogle Scholar
  12. 12.
    Lindau M, Nüsse O, Bennett J et al (1993) The membrane fusion events in degranulating guinea pig eosinophils. J Cell Sci 104(Pt 1):203–210PubMedGoogle Scholar
  13. 13.
    Nofal S, Becherer U, Hof D et al (2007) Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J Neurosci 27:1386–1395CrossRefPubMedGoogle Scholar
  14. 14.
    Ming M, Schirra C, Becherer U et al (2015) Behavior and properties of mature lytic granules at the immunological synapse of human cytotoxic T lymphocytes. PLoS One 10:e0135994CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  16. 16.
    Bers DM, Patton CW, Nuccitelli R (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 40:3–29CrossRefPubMedGoogle Scholar
  17. 17.
    Patton C, Thompson S, Epel D (2004) Some precautions in using chelators to buffer metals in biological solutions. Cell Calcium 35:427–431CrossRefPubMedGoogle Scholar
  18. 18.
    McGuigan JAS, Stumpff F (2013) Calculated and measured [Ca(2+)] in buffers used to calibrate Ca(2+) macroelectrodes. Anal Biochem 436:29–35CrossRefPubMedGoogle Scholar
  19. 19.
    Choudhuri K, Dustin ML (2010) Signaling microdomains in T cells. FEBS Lett 584:4823–4831CrossRefPubMedGoogle Scholar
  20. 20.
    Halimani M, Pattu V, Marshall MR et al (2014) Syntaxin11 serves as a t-SNARE for the fusion of lytic granules in human cytotoxic T lymphocytes. Eur J Immunol 44:573–584CrossRefPubMedGoogle Scholar
  21. 21.
    Bertrand F, Muller S, Roh K-H et al (2013) An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. Proc Natl Acad Sci 110:6073–6078CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Grossman WJ, Verbsky JW, Tollefsen BL et al (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104:2840–2848CrossRefPubMedGoogle Scholar
  23. 23.
    Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100CrossRefPubMedGoogle Scholar
  24. 24.
    Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pores-Fernando AT, Zweifach A (2009) Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 231:160–173CrossRefPubMedGoogle Scholar
  26. 26.
    Gillis KD (2000) Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflügers Arch 439:655–664CrossRefPubMedGoogle Scholar
  27. 27.
    Gillis KD (1995) Techniques for membrane capacitance measurements. In: Single-channel recording. Plenum, pp 155–198Google Scholar
  28. 28.
    Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Center for Integrative Physiology and Molecular MedicineUniversität des SaarlandesHomburg/SaarGermany

Personalised recommendations