Methods for Identifying and Examining HTLV-1 HBZ Post-translational Modifications

  • Jacob Al-Saleem
  • Mamuka Kvaratskhelia
  • Patrick L. GreenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1582)


Post-translational modifications (PTMs) are chemical alterations to individual amino acids that alter a protein’s conformation, stability, and/or function. Several pathogenic viruses have been shown to encode proteins with PTMs, including human T-cell leukemia virus type 1 (HTLV-1) Tax and Rex regulatory proteins. HTLV-1 basic leucine zipper protein (HBZ) was hypothesized to feature PTMs due to its functional activities and interactions with cellular transcription factors and acetyltransferases. Here, we describe the approach used to identify, via mass spectrometry, the PTMs of HBZ. In addition, we describe methods to determine the functional relevance of the identified PTMs.

Key words

HTLV-1 Post-translational modifications HBZ Mass spectrometry NF-κB c-Jun IRF-1 


  1. 1.
    Poiesz BJ, Ruscetti FW, Gazdar AF et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77:7415–7419CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yoshida M, Miyoshi I, Hinuma Y (1982) Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A 79:2031–2035. doi: 10.1186/s12985-015-0398-x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Osame M, Usuku K, Izumo S et al (1986) HTLV-I associated myelopathy, a new clinical entity. Lancet 1:1031–1032CrossRefPubMedGoogle Scholar
  4. 4.
    Matsuoka M (2005) Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2:27. doi: 10.1186/1742-4690-2-27 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nicot C, Harrod RL, Ciminale V, Franchini G (2005) Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene 24:6026–6034. doi: 10.1038/sj.onc.1208977 CrossRefPubMedGoogle Scholar
  6. 6.
    Felber BK, Paskalis H, Kleinman-Ewing C et al (1985) The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 229:675–679CrossRefPubMedGoogle Scholar
  7. 7.
    Grassmann R, Berchtold S, Radant I et al (1992) Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture. J Virol 66:4570–4575PubMedPubMedCentralGoogle Scholar
  8. 8.
    Grossman WJ, Kimata JT, Wong FH et al (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A 92:1057–1061CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Michael D, Robek LR (1999) Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol 73:4856–4865Google Scholar
  10. 10.
    Gaudray G, Gachon F, Basbous J et al (2002) The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol 76:12813–12822. doi: 10.1128/JVI.76.24.12813-12822.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Larocca D, Chao LA, Seto MH, Brunck TK (1989) Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem Biophys Res Commun 163:1006–1013CrossRefPubMedGoogle Scholar
  12. 12.
    Lemasson I, Lewis MR, Polakowski N et al (2007) Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J Virol 81:1543–1553. doi: 10.1128/JVI.00480-06 CrossRefPubMedGoogle Scholar
  13. 13.
    Basbous J, Arpin C, Gaudray G et al (2003) The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 278:43620–43627. doi: 10.1074/jbc.M307275200 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao T, Yasunaga J-I, Satou Y et al (2009) Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood 113:2755–2764. doi: 10.1182/blood-2008-06-161729 CrossRefPubMedGoogle Scholar
  15. 15.
    Mukai R, Ohshima T (2011) Dual effects of HTLV-1 bZIP factor in suppression of interferon regulatory factor 1. Biochem Biophys Res Commun 409:328–332. doi: 10.1016/j.bbrc.2011.05.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Satou Y, Yasunaga J-I, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 103:720–725. doi: 10.1073/pnas.0507631103 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Arnold J, Zimmerman B, Li M et al (2008) Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 112:3788–3797. doi: 10.1182/blood-2008-04-154286 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Satou Y, Yasunaga J-I, Zhao T et al (2011) HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 7:e1001274. doi: 10.1371/journal.ppat.1001274 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Takeda S, Maeda M, Morikawa S et al (2004) Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 109:559–567. doi: 10.1002/ijc.20007 CrossRefPubMedGoogle Scholar
  20. 20.
    Koiwa T, Hamano-Usami A, Ishida T et al (2002) 5'-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J Virol 76:9389–9397. doi: 10.1128/JVI.76.18.9389-9397.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Furukawa Y, Kubota R, Tara M et al (2001) Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 97:987–993CrossRefPubMedGoogle Scholar
  22. 22.
    Prabakaran S, Lippens G, Steen H, Gunawardena J (2012) Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4:565–583. doi: 10.1002/wsbm.1185 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bex F, Murphy K, Wattiez R et al (1999) Phosphorylation of the human T-cell leukemia virus type 1 transactivator tax on adjacent serine residues is critical for tax activation. J Virol 73:738–745PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lodewick J, Lamsoul I, Polania A et al (2009) Acetylation of the human T-cell leukemia virus type 1 Tax oncoprotein by p300 promotes activation of the NF-κB pathway. Virology 386:68–78. doi: 10.1016/j.virol.2008.12.043 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fryrear KA, Guo X, Kerscher O, Semmes OJ (2012) The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax. Blood 119:1173–1181. doi: 10.1182/blood-2011-06-358564 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kesic M, Doueiri R, Ward M et al (2009) Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 6:105. doi: 10.1186/1742-4690-6-105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Matsumoto J, Ohshima T, Isono O, Shimotohno K (2005) HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene 24:1001–1010. doi: 10.1038/sj.onc.1208297 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhi H, Yang L, Kuo Y-L et al (2011) NF-κB hyper-activation by HTLV-1 Tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathog 7:e1002025. doi: 10.1371/journal.ppat.1002025.g007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kelly JJ, Shao Q, Jagger DJ, Laird DW (2015) Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci 128(21):3947–3960. doi: 10.1242/jcs.174698 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jacob Al-Saleem
    • 1
    • 2
  • Mamuka Kvaratskhelia
    • 1
    • 3
  • Patrick L. Green
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Center for Retrovirus ResearchThe Ohio State UniversityColumbusUSA
  2. 2.Department of Veterinary BiosciencesThe Ohio State UniversityColumbusUSA
  3. 3.College of PharmacyThe Ohio State UniversityColumbusUSA
  4. 4.Compreshensive Cancer Center and Solove Research InstituteThe Ohio State UniversityColumbusUSA
  5. 5.Department of Molecular Virology, Immunology, and Medical GeneticsThe Ohio State UniversityColumbusUSA

Personalised recommendations