Skip to main content

Isolation of Exosomes from HTLV-Infected Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1582)

Abstract

Exosomes are small vesicles, approximately 30–100 nm in diameter, that transport various cargos, such as proteins and nucleic acids, between cells. It has been previously shown that exosomes can also transport viral proteins, such as the HTLV protein Tax, and viral RNAs, potentially contributing to disease pathogenesis. Therefore, it is important to understand their impact on recipient cells. Here, we describe methods of isolating and purifying exosomes from cell culture or tissue through ultracentrifugation, characterizing exosomes by surface biomarkers, and assays that evaluate the effect of exosomes on cells.

Key words

  • Exosome
  • HTLV
  • Ultracentrifugation
  • Sucrose gradient
  • Functional assay

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6872-5_5
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6872-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108

    CAS  CrossRef  PubMed  Google Scholar 

  2. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi:10.1146/annurev-cellbio-101512-122326

    CAS  CrossRef  PubMed  Google Scholar 

  3. Fleming A, Sampey G, Chung MC et al (2014) The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens. Pathog Dis 71(2):109–120. doi:10.1111/2049-632X.12135

    CrossRef  PubMed  Google Scholar 

  4. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948. doi:10.1016/j.bbagen.2012.03.017

    CAS  CrossRef  PubMed  Google Scholar 

  5. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11. doi:10.1007/s11060-013-1084-8

    CrossRef  PubMed  Google Scholar 

  6. Sampey GC, Meyering SS, Asad Zadeh M et al (2014) Exosomes and their role in CNS viral infections. J Neurovirol 20(3):199–208. doi:10.1007/s13365-014-0238-6

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Naito Y, Yoshioka Y, Ochiya T (2015) The functional role of exosomes in cancer biology and their potential as biomarkers and therapeutic targets of cancer. Gan To Kagaku Ryoho 42(6):647–655

    PubMed  Google Scholar 

  8. Dreux M, Garaigorta U, Boyd B et al (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12(4):558–570. doi:10.1016/j.chom.2012.08.010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Hu G, Yao H, Chaudhuri AD et al (2012) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381. doi:10.1038/cddis.2012.114

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Luga V, Zhang L, Viloria-Petit AM et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556. doi:10.1016/j.cell.2012.11.024

    CAS  CrossRef  PubMed  Google Scholar 

  11. Suetsugu A, Honma K, Saji S et al (2013) Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev 65(3):383–390. doi:10.1016/j.addr.2012.08.007

    CAS  CrossRef  PubMed  Google Scholar 

  12. Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. doi:10.1038/nm.2753

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Honegger A, Leitz J, Bulkescher J et al (2013) Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 133(7):1631–1642. doi:10.1002/ijc.28164

    CAS  CrossRef  PubMed  Google Scholar 

  14. Kadiu I, Narayanasamy P, Dash PK et al (2012) Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol 189(2):744–754. doi:10.4049/jimmunol.1102244

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Khatua AK, Taylor HE, Hildreth JE, Popik W (2009) Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 83(2):512–521. doi:10.1128/JVI.01658-08

    CAS  CrossRef  PubMed  Google Scholar 

  16. Jaworski E, Narayanan A, Van Duyne R et al (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289(32):22284–22305. doi:10.1074/jbc.M114.549659

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Mori Y, Koike M, Moriishi E et al (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742. doi:10.1111/j.1600-0854.2008.00796.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333. doi:10.1073/pnas.0914843107

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Lenassi M, Cagney G, Liao M et al (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1):110–122. doi:10.1111/j.1600-0854.2009.01006.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Meckes DG Jr, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85(24):12844–12854. doi:10.1128/JVI.05853-11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Ceccarelli S, Visco V, Raffa S et al (2007) Epstein-Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int J Cancer 121(7):1494–1506

    CAS  CrossRef  PubMed  Google Scholar 

  22. Kastelowitz N, Ying H (2014) Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. Chembiochem 15(7):923–928. doi:10.1002/cbic.201400043

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Raposo G, Stoorvogel W (2013) Extracellular vesicles: Exosomes microvesicles, and friends. JCB 200(4):373–383. doi:10.1083/jcb.201211138

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Vader P, Breakefield XO, Wood MJA (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20(7):385–393. doi:10.1016/j.molmed.2014.03.002

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Zlotogorski-Hurvitz A, Dayan D, Chaushu G et al (2015) Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 63(3):181–189. doi:10.1369/0022155414564219

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Narayanan A, Iordanskiy S, Das R et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288(27):20014–20033. doi:10.1074/jbc.M112.438895

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Fertig ET, Gherghiceanu M, Popescu LM (2014) Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med 18(10):1938–1943. doi:10.1111/jcmm.12436

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Brydson R, Brown A, Hodges C et al (2015) Microscopy of nanoparticulate dispersions. J Microsc. doi:10.1111/jmi.12290

    Google Scholar 

  29. van der Pol E, Coumans FA, Grootemaat AE et al (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12(7):1182–1192. doi:10.1111/jth.12602

    CrossRef  PubMed  Google Scholar 

  30. Sokolova V, Ludwig AK, Hornung S et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150. doi:10.1016/j.colsurfb.2011.05.013

    CAS  CrossRef  PubMed  Google Scholar 

  31. Oosthuyzen W, Sime NE, Ivy JR et al (2013) Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol 591(Pt 23):5833–5842. doi:10.1113/jphysiol.2013.264069

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855. doi:10.1002/elps.200800720

    CAS  CrossRef  PubMed  Google Scholar 

  33. Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014:361590. doi:10.1155/2014/361590

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090. doi:10.1074/jbc.M301642200

    CAS  CrossRef  PubMed  Google Scholar 

  35. Cantin R, Diou J, Bélanger D et al (2008) Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30. doi:10.1016/j.jim.2008.07.007

    CAS  CrossRef  PubMed  Google Scholar 

  36. Liu Z, Zhang X, Yu Q, He JJ (2014) Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun 455(3–4):218–222. doi:10.1016/j.bbrc.2014.10.146

    CAS  CrossRef  PubMed  Google Scholar 

  37. Luo X, Fan Y, Park IW, He JJ (2015) Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 10(4):e0124436. doi:10.1371/journal.pone.0124436

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Oksvold MP, Neurauter A, Pedersen KW (2015) Magnetic bead-based isolation of exosomes. Methods Mol Biol 1218:465–481. doi:10.1007/978-1-4939-1538-5_27

    CAS  CrossRef  PubMed  Google Scholar 

  39. Pospichalova V, Svoboda J, Dave Z et al (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Ves 4:25530. doi:10.3402/jev.v4.25530

    CrossRef  Google Scholar 

  40. van der Pol E, van Gemert MJ, Sturk A et al (2012) Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 10(5):919–930. doi:10.1111/j.1538-7836.2012.04683.x

    CrossRef  PubMed  Google Scholar 

  41. Garza-Licudine E, Deo D, Yu S et al (2010) Portable nanoparticle quantization using a resizable nanopore instrument – the IZON qNano™. Conf Proc IEEE Eng Med Biol Soc 2010:5736–5739. doi:10.1109/IEMBS.2010.5627861

    PubMed  Google Scholar 

  42. Choi DH, Kwon YM, Chiura HX et al (2015) Extracellular Vesicles of the Hyperthermophilic Archaeon “Thermococcus onnurineus” NA1T. Appl Environ Microbiol 81(14):4591–4599. doi:10.1128/AEM.00428-15

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Coumans FA, van der Pol E, Böing AN et al (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Ves 3:25922. doi:10.3402/jev.v3.25922

    CrossRef  Google Scholar 

  44. Maas SL, De Vrij J, Broekman ML (2014) Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp 92:e51623. doi:10.3791/51623

    Google Scholar 

  45. SBI (2015) Quantitate exosomes by ELISA. System Biosciences, Mountain View, CA. Updated 2015. https://www.systembio.com/microrna-research/exosome-antibody/elisas. Accessed 17 Aug 2015

  46. Franquesa M, Hoogduijn MJ, Ripoll E et al (2014) Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 5:525. doi:10.3389/fimmu.2014.00525

    CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Qiagen (2013) miRNeasy Mini Kit. Updated 2013,March, https://www.qiagen.com/us/shop/sample-technologies/rna-sample-technologies/mirna/mirneasy-mini-kit/, Accessed 13 Oct 2015

  48. Yeh Y-Y, Ozer HG, Lehman AM et al (2015) Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 125(21):3297–3305. doi:10.1182/blood-2014-12-618470

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Chevillet JR, Kang Q, Ruf IK et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111(41):14888–14893. doi:10.1073/pnas.1408301111

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods (San Diego, CA) 50(4):298–301. doi:10.1016/j.ymeth.2010.01.032

    CAS  CrossRef  Google Scholar 

  51. ATCC (2014) CTLL-2 (ATCC® TIB-214™). American Type Culture Collection, Manassas, VA. Updated 2014. http://www.atcc.org/products/all/TIB-214.aspx#characteristics. Accessed 13 Oct 2015

  52. Weston L, Geczy A, Farrell C (1998) A convenient and reliable IL-2 bioassay using frozen CTLL-2 to improve the detection of helper T lymphocyte precursors. Immunol Cell Biol 76(2):190–192

    CAS  CrossRef  PubMed  Google Scholar 

  53. eBioscience, San Diego, CA. Updated 2010. https://www.ebioscience.com/media/pdf/best-protocols/cytokine-bioassays.pdf. Accessed 14 Oct 2015

  54. Tian T et al (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111:488–496

    CAS  CrossRef  PubMed  Google Scholar 

  55. Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, Xiao ZD (2013) Dynamics of exosome internalization and trafficking. J Cell Physiol 228(7):1487–1495

    CAS  CrossRef  PubMed  Google Scholar 

  56. Zhang J et al (2015) Exosome and exosomal mircroRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24

    CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Schwab A., et al. (2015) Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol. eCollection

    Google Scholar 

  59. Bard MP et al (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121

    CAS  CrossRef  PubMed  Google Scholar 

  60. Blanchard N et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168:3235–3241

    CAS  CrossRef  PubMed  Google Scholar 

  61. Caby MP et al (2005) Exosomal like vesicles are present in human blood plasma. Int Immunol 17:879–887

    CAS  CrossRef  PubMed  Google Scholar 

  62. Clayton A et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174

    CAS  CrossRef  PubMed  Google Scholar 

  63. De Gassart A et al (2003) Lipid raft- associated protein sorting in exosomes. Blood 102:4336–4344

    CAS  CrossRef  PubMed  Google Scholar 

  64. Fevrier B et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Heijnen H et al (1999) Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  66. Mears R et al (2004) Proteomic analysis of melanoma-derived exosomes by two dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031

    CAS  CrossRef  PubMed  Google Scholar 

  67. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Segura E et al (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T cell priming. Blood 106:216–223

    CAS  CrossRef  PubMed  Google Scholar 

  69. Skokos D et al (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166:868–876

    CAS  CrossRef  PubMed  Google Scholar 

  70. Thery C et al (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162

    CAS  CrossRef  PubMed  Google Scholar 

  71. van Niel G et al (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52:1690–1697

    CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Wubbolts R et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body. J Biol Chem 278(13):10963–10972

    CAS  CrossRef  PubMed  Google Scholar 

  73. Jaworski E et al (2014) The use of nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS One 9(5):e96778

    CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Chahar HS, Bao X, Casola A (2015) Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 7(6):3204–3225

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Lai FW, Lichty BD, Bowidsh DM (2015) Microvesicles: ubiquitous contributors to infection and immunity. J Leukoc Biol 97(2):237–245

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Kashanchi lab for any and all assistance with the manuscript. In addition, we would like to thank Dr. Benjamin Lepene, Ceres Biosciences, for providing reagents and expertise on the NT080 and NT082. This work was supported by National Institutes of Health grants (AI078859, AI074410, and AI043894) to F.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatah Kashanchi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Barclay, R.A., Pleet, M.L., Akpamagbo, Y., Noor, K., Mathiesen, A., Kashanchi, F. (2017). Isolation of Exosomes from HTLV-Infected Cells. In: Casoli, C. (eds) Human T-Lymphotropic Viruses. Methods in Molecular Biology, vol 1582. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6872-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6872-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6870-1

  • Online ISBN: 978-1-4939-6872-5

  • eBook Packages: Springer Protocols