Recombinant Virus Vaccines pp 203-222

Part of the Methods in Molecular Biology book series (MIMB, volume 1581)

Generating Recombinant Vesicular Stomatitis Viruses for Use as Vaccine Platforms

Protocol

Abstract

The unique properties of vesicular stomatitis virus (VSV) make it a promising vaccine platform. With the advent of plasmid-based approaches to generate recombinant VSV viruses that express glycoproteins of other viruses, researchers now have the means to generate vaccine candidates targeting a variety of human pathogens. This chapter gives a general overview of the workings of VSV as a vaccine platform and provides a detailed protocol for the generation of recombinant VSV from plasmids.

Key words

Vesicular stomatitis virus Vaccine platform Reverse genetics Vaccinia virus T7 RNA polymerase 

References

  1. 1.
    Marzi A, Feldmann F, Geisbert TW, Feldmann H, Safronetz D (2015) Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg Infect Dis 21(2):305–307CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10(5):210–216CrossRefPubMedGoogle Scholar
  3. 3.
    Geisbert TW, Feldmann H (2011) Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 204(Suppl):S1075–S1081CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fuchs JD, Frank I, Elizaga ML, Allen M, Frahm N, Kochar N, Li S, Edupuganti S, Kalams SA, Tomaras GD, Sheets R, Pensiero M, Tremblay MA, Higgins TJ, Latham T, Egan MA, Clarke DK, Eldridge JH, Mulligan M, Rouphael N, Estep S, Rybczyk K, Dunbar D, Buchbinder S, Wagner T, Isbell R, Chinnell V, Bae J, Escamilla G, Tseng J, Fair R, Ramirez S, Broder G, Briesemeister L, Ferrara A (2015) First-in-human evaluation of the safety and immunogenicity of a recombinant vesicular stomatitis virus human immunodeficiency virus-1 gag vaccine (HVTN 090). Open Forum Infect Dis 2(3):ofv082PubMedPubMedCentralGoogle Scholar
  5. 5.
    Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Hossmann S, Kondé MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Kéïta S, Kieny MP, Røttingen J-A (2015) Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386(9996):857–866CrossRefPubMedGoogle Scholar
  6. 6.
    Huttner A, Dayer J-A, Yerly S, Combescure C, Auderset F, Desmeules J, Eickmann M, Finckh A, Goncalves AR, Hooper JW, Kaya G, Krähling V, Kwilas S, Lemaître B, Matthey A, Silvera P, Becker S, Fast PE, Moorthy V, Kieny MP, Kaiser L, Siegrist C-A (2015) The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect Dis 15(10):1156–1166CrossRefPubMedGoogle Scholar
  7. 7.
    Mire CE, Geisbert JB, Versteeg KM, Mamaeva N, Agans KN, Geisbert TW, Connor JH (2015) A single-vector, single-injection trivalent filovirus vaccine: proof of concept study in outbred guinea pigs. J Infect Dis 212(Suppl):S384–S388CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Whitt MA (2010) Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 169(2):365–374CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83(21):8122–8126CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Buchholz UJ, Finke S, Conzelmann K-K (1999) Generation of Bovine Respiratory Syncytial Virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259PubMedPubMedCentralGoogle Scholar
  12. 12.
    Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ (2001) Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol 3(4):513–517PubMedGoogle Scholar
  13. 13.
    Knipe DM, Howley PM (2007) Fields virology, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  14. 14.
    Barr JN, Whelan SPJ, Wertz GW (2002) Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim Biophys Acta 1577:337–353CrossRefPubMedGoogle Scholar
  15. 15.
    Isaacs SN (ed) (2004) Vaccinia virus and poxvirology: methods in molecular biology, vol 269. Hamana Press, TotowaGoogle Scholar
  16. 16.
    Ruedas JB, Perrault J (2009) Insertion of enhanced green fluorescent protein in a hinge region of vesicular stomatitis virus L polymerase protein creates a temperature-sensitive virus that displays no virion-associated polymerase activity in vitro. J Virol 83(23):12241–12252CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ruedas JB, Perrault J (2014) Putative domain-domain interactions in the vesicular stomatitis virus L polymerase protein appendage region. J Virol 88(24):14458–14466CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Microbiology and National Emerging Infectious Disease LaboratoryBoston University School of MedicineBostonUSA

Personalised recommendations