MicroRNA Detection and Target Identification pp 149-174

Part of the Methods in Molecular Biology book series (MIMB, volume 1580) | Cite as

sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine

  • Cristina Gómez-Martín
  • Ricardo Lebrón
  • Antonio Rueda
  • José L. Oliver
  • Michael Hackenberg
Protocol

Abstract

High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20–250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.

We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.

Key words

Small RNA Bioinformatics Next generation sequencing Virtual machine 

References

  1. 1.
    Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41CrossRefPubMedGoogle Scholar
  2. 2.
    Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75CrossRefPubMedGoogle Scholar
  5. 5.
    Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M, Marcilla A (2014) Surface analysis of dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics 105:232–241CrossRefPubMedGoogle Scholar
  6. 6.
    Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:5488CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza Á, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:W467–W473CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Barturen G, Rueda A, Hamberg M, Alganza A, Lebron R (2014) sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods in Next Generation Sequencing 1:21–31CrossRefGoogle Scholar
  11. 11.
    Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, Wang S, Liu T, Cai H, Yao K, Li J-L, Li X (2015) Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun 6:7353CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    The SRA knowledge base, NCBI help manual. Staff SRAS: using the SRA toolkit to convert .sra files into other formats. 2011 Bethesda (MD)Google Scholar
  13. 13.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  14. 14.
    Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25:2298–2301CrossRefPubMedGoogle Scholar
  16. 16.
    Chu EA, Wu JM, Tunkel DE, Ishman SL (2008) Nasopharyngeal carcinoma: the role of the Epstein-Barr virus. Medscape J Med 10:165PubMedPubMedCentralGoogle Scholar
  17. 17.
    Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4 Google Scholar
  18. 18.
    Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229CrossRefPubMedGoogle Scholar
  19. 19.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11:292CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  24. 24.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J: PsRobot (2012) A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40, W22–W28.Google Scholar
  26. 26.
    Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefPubMedGoogle Scholar
  28. 28.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tarazona S, García F, Ferrer A, Dopazo J, Conesa A (2012) NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet J 17:18CrossRefGoogle Scholar
  30. 30.
    The RNAcentral Consortium (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43:D123–D129CrossRefGoogle Scholar
  31. 31.
    Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Cristina Gómez-Martín
    • 1
  • Ricardo Lebrón
    • 1
    • 2
  • Antonio Rueda
    • 3
  • José L. Oliver
    • 1
    • 2
  • Michael Hackenberg
    • 1
    • 2
  1. 1.Dpto. de Genética, Facultad de CienciasUniversidad de Granada, Campus de Fuentenueva s/nGranadaSpain
  2. 2.Lab. de Bioinformática, Centro de Investigación BiomédicaPTS, Instituto de Biotecnología, Avda. del Conocimiento s/nGranadaSpain
  3. 3.Queen Mary University of London, Dawson Hall, Charterhouse SquareLondonUK

Personalised recommendations