Generating Conformation and Complex-Specific Synthetic Antibodies

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)

Abstract

Phage display is commonly used to identify and isolate binders from large combinatorial libraries. Here we present phage selection protocols enabling generation of synthetic antibodies capable of recognizing multiprotein complexes and conformational states. The procedure describes stages of the experiment design, optimization, and screening, as well as provides the framework for building downstream assays with an end goal of isolating bioactive antibodies for future therapeutic use. The methods described are also applicable to screening directly on cells and can be ported to other in vitro directed evolution systems utilizing non-immunoglobulin scaffolds.

Key words

Antibody phage display Synthetic antibody Conformation specific 

References

  1. 1.
    Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116. doi:10.1038/nbt1126 CrossRefPubMedGoogle Scholar
  2. 2.
    Bradbury A, Velappan N, Verzillo V et al (2003) Antibodies in proteomics I: generating antibodies. Trends Biotechnol 21:275–281. doi:10.1016/S0167-7799(03)00112-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Bradbury A, Velappan N, Verzillo V et al (2003) Antibodies in proteomics II: screening, high-throughput characterization and downstream applications. Trends Biotechnol 21:312–317. doi:10.1016/S0167-7799(03)00117-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Miller KR, Koide A, Leung B et al (2012) T Cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One 7:e43746. doi:10.1371/journal.pone.0043746 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Persson H, Ye W, Wernimont A et al (2012) CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol. doi:10.1016/j.jmb.2012.11.037 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Prassler J, Thiel S, Pracht C et al (2011) HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413:261–278. doi:10.1016/j.jmb.2011.08.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson G, Wu TT (2001) Kabat database and its applications: future directions. Nucleic Acids Res 29:205–206CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wu TT, Johnson G, Kabat EA (1993) Length distribution of CDRH3 in antibodies. Protein Struct Funct Genet 16:1–7CrossRefGoogle Scholar
  9. 9.
    Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. mAbs 5:445–470. doi:10.4161/mabs.24218 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hornsby M, Paduch M, Miersch S et al (2015) A high through-put platform for recombinant antibodies to folded proteins. Mol Cell Proteomics 14:2833–2847. doi:10.1074/mcp.O115.052209 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhou H, Wang Y, Wang W et al (2009) Generation of monoclonal antibodies against highly conserved antigens. PLoS One 4:e6087. doi:10.1371/journal.pone.0006087 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Scheerlinck JP, DeLeys R, Saman E et al (1993) Redistribution of a murine humoral immune response following removal of an immunodominant B cell epitope from a recombinant fusion protein. Mol Immunol 30:733–739CrossRefPubMedGoogle Scholar
  13. 13.
    Saldanha JW (2009) Humanization of recombinant antibodies. Cambridge University Press, New York, NYCrossRefGoogle Scholar
  14. 14.
    Li Q, Wanderling S, Paduch M et al (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252. doi:10.1038/nsmb.2768 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao J, Sidhu SS, Wells JA (2009) Two-state selection of conformation-specific antibodies. Proc Natl Acad Sci U S A 106:3071–3076. doi:10.1073/pnas.0812952106 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rizk SS, Paduch M, Heithaus JH et al (2011) Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat Struct Mol Biol 18:437–442. doi:10.1038/nsmb.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shukla AK, Manglik A, Kruse AC et al (2013) Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141. doi:10.1038/nature12120 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mateja A, Paduch M, Chang H-Y et al (2015) Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–1155. doi:10.1126/science.1261671 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Uysal S, Vásquez V, Tereshko V et al (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci U S A 106:6644–6649. doi:10.1073/pnas.0810663106 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Welch BD, Paduch M, Leser GP et al (2014) Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol 88:11713–11725. doi:10.1128/JVI.01707-14 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stuwe T, Bley CJ, Thierbach K et al (2015) Architecture of the fungal nuclear pore inner ring complex. Science 350:56–64. doi:10.1126/science.aac9176 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stuwe T, Correia AR, Lin DH et al (2015) Architecture of the nuclear pore complex coat. Science 347:1148–1152. doi:10.1126/science.aaa4136 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wittrup KD, Verdine GL (2012) Protein engineering for therapeutics. Academic, New York, NYGoogle Scholar
  24. 24.
    Sidhu SS (2005) Phage display in biotechnology and drug discovery. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  25. 25.
    Brawley CM, Uysal S, Kossiakoff AA, Rock RS (2010) Characterization of engineered actin binding proteins that control filament assembly and structure. PLoS One 5:e13960. doi:10.1371/journal.pone.0013960 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19:385–390. doi:10.1093/protein/gzl018 CrossRefPubMedGoogle Scholar
  27. 27.
    Vogt AD, Pozzi N, Chen Z, Di Cera E (2014) Essential role of conformational selection in ligand binding. Biophys Chem 186:13–21. doi:10.1016/j.bpc.2013.09.003 CrossRefPubMedGoogle Scholar
  28. 28.
    James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367. doi:10.1126/science.1079731 CrossRefPubMedGoogle Scholar
  29. 29.
    Lamboy JA, Arter JA, Knopp KA et al (2009) Phage wrapping with cationic polymers eliminates nonspecific binding between M13 phage and high pI target proteins. J Am Chem Soc 131:16454–16460. doi:10.1021/ja9050873 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang X, Hoey RJ, Lin G et al (2012) Identification of a tetratricopeptide repeat-like domain in the nicastrin subunit of γ-secretase using synthetic antibodies. Proc Natl Acad Sci U S A 109:8534–8539. doi:10.1073/pnas.1202691109 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhong N, Loppnau P, Seitova A et al (2015) Optimizing production of antigens and Fabs in the context of generating recombinant antibodies to human proteins. PLoS One 10:e0139695. doi:10.1371/journal.pone.0139695 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fellouse FA, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940 S0022-2836(07)01062-5CrossRefPubMedGoogle Scholar
  33. 33.
    Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2:1368–1386. doi:10.1038/nprot.2007.151 CrossRefPubMedGoogle Scholar
  34. 34.
    Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol Clifton NJ 537:39–64. doi:10.1007/978-1-59745-251-9_3 CrossRefGoogle Scholar
  35. 35.
    Robinson M-P, Ke N, Lobstein J et al (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun. doi:10.1038/ncomms9072 Google Scholar
  36. 36.
    Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55. doi:10.1093/nar/gkr1288 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  38. 38.
    Nieba L, Nieba-Axmann SE, Persson A et al (1997) BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem 252:217–228. doi:10.1006/abio.1997.2326 CrossRefPubMedGoogle Scholar
  39. 39.
    Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6. doi:10.1016/j.ab.2006.10.040 CrossRefPubMedGoogle Scholar
  40. 40.
    Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature-class of 2008: “The Mighty Binders”. J Mol Recognit 23:1–64. doi:10.1002/jmr.1004 CrossRefPubMedGoogle Scholar
  41. 41.
    Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221. doi:10.1038/nprot.2007.321 CrossRefPubMedGoogle Scholar
  42. 42.
    Lo M-C, Aulabaugh A, Jin G et al (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159. doi:10.1016/j.ab.2004.04.031 CrossRefPubMedGoogle Scholar
  43. 43.
    Cimmperman P, Baranauskiene L, Jachimoviciūte S et al (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231. doi:10.1529/biophysj.108.134973 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vedadi M, Niesen FH, Allali-Hassani A et al (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A 103:15835–15840. doi:10.1073/pnas.0605224103 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nettleship JE, Brown J, Groves MR, Geerlof A (2008) Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering. Methods Mol Biol Clifton NJ 426:299–318. doi:10.1007/978-1-60327-058-8_19 CrossRefGoogle Scholar
  46. 46.
    Jacobs SA, Wu S-J, Feng Y et al (2009) Cross-interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharm Res 27:65–71. doi:10.1007/s11095-009-0007-z CrossRefPubMedGoogle Scholar
  47. 47.
    Liu Y, Caffry I, Wu J et al (2014) High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs 6:483–492. doi:10.4161/mabs.27431 CrossRefPubMedGoogle Scholar
  48. 48.
    Matochko WL, Chu K, Jin B et al (2012) Deep sequencing analysis of phage libraries using Illumina platform. Methods 58:47–55. doi:10.1016/j.ymeth.2012.07.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoUSA
  2. 2.Institute for Biophysical DynamicsThe University of ChicagoChicagoUSA

Personalised recommendations