Air–Liquid Interface Cell Exposures to Nanoparticle Aerosols

  • Nastassja A. LewinskiEmail author
  • Nathan J. Liu
  • Akrivi Asimakopoulou
  • Eleni Papaioannou
  • Athanasios Konstandopoulos
  • Michael Riediker
Part of the Methods in Molecular Biology book series (MIMB, volume 1570)


The field of nanomedicine is steadily growing and several nanomedicines are currently approved for clinical use with even more in the pipeline. Yet, while the use of nanotechnology to improve targeted drug delivery to the lungs has received some attention, the use of nanoparticles for inhalation drug delivery has not yet resulted in successful translation to market as compared to intravenous drug delivery. The reasons behind the lack of inhaled nanomedicines approved for clinical use or under preclinical development are unclear, but challenges related to safety are likely to contribute. Although inhalation toxicology studies often begin using animal models, there has been an increase in the development and use of in vitro air–liquid interface (ALI) exposure systems for toxicity testing of engineered nanoparticle aerosols, which will be useful for rapid testing of candidate substances and formulations. This chapter describes an ALI cell exposure assay for measuring toxicological effects, specifically cell viability and oxidative stress, resulting from exposure to aerosols containing nanoparticles.

Key words

Air-interfaced culture SPIONs Iron oxide Nanoparticles Aerosol 



This work was supported by the Whitaker International Program through a postdoctoral grant to NAL, the Wagoner Foreign Study Scholarship through a summer research grant to NJL, the Institute for Work and Health in Lausanne, Switzerland, and Virginia Commonwealth University.


  1. 1.
    OECD. Test No. 403: Acute Inhalation Toxicity. OECD PublishingGoogle Scholar
  2. 2.
    OECD. Test No. 436: Acute Inhalation Toxicity—Acute Toxic Class Method. OECD PublishingGoogle Scholar
  3. 3.
    Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31(11):1113–1131. doi: 10.1177/0960327112446515 CrossRefGoogle Scholar
  4. 4.
    Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN (2011) Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205(2):105–115. doi: 10.1016/j.toxlet.2011.05.1027 CrossRefGoogle Scholar
  5. 5.
    Sung JH, Ji JH, Song KS, Lee JH, Choi KH, Lee SH, Yu IJ (2011) Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 27(2):149–154. doi: 10.1177/0748233710382540 CrossRefGoogle Scholar
  6. 6.
    Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10(12):8617–8624. doi: 10.1166/jnn.2010.2483 CrossRefGoogle Scholar
  7. 7.
    Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23(7):1482–1490. doi: 10.1007/s11095-006-0255-0 CrossRefGoogle Scholar
  8. 8.
    Lehmann AD, Daum N, Bur M, Lehr C-M, Gehr P, Rothen-Rutishauser BM (2011) An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77(3):398–406. doi: 10.1016/j.ejpb.2010.10.014 CrossRefGoogle Scholar
  9. 9.
    Steimer A, Haltner E, Lehr CM (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18(2):137–182. doi: 10.1089/jam.2005.18.137 CrossRefGoogle Scholar
  10. 10.
    Paur H-R, Cassee FR, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling WG, Hänninen O, Kasper G, Riediker M, Rothen-Rutishauser B, Schmid O (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J Aerosol Sci 42(10):668–692. doi: 10.1016/j.jaerosci.2011.06.005 CrossRefGoogle Scholar
  11. 11.
    Akrivi A, Emmanouil D, Nastassja L, Michael R, Eleni P, Athanasios GK (2013) Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles. J Phys Conf Ser 429(1):012023Google Scholar
  12. 12.
    Deschl U, Vogel J, Aufderheide M (2011) Development of an in vitro exposure model for investigating the biological effects of therapeutic aerosols on human cells from the respiratory tract. Exp Toxicol Pathol 63(6):593–598. doi: 10.1016/j.etp.2010.04.013 CrossRefGoogle Scholar
  13. 13.
    Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, Schulz H, Ferron GA, Schmid O (2009) A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6(1):1–17. doi: 10.1186/1743-8977-6-32 CrossRefGoogle Scholar
  14. 14.
    Graczyk H, Bryan LC, Lewinski N, Suarez G, Coullerez G, Bowen P, Riediker M (2014) Physicochemical characterization of nebulized Superparamagnetic Iron Oxide Nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv 28(1):43–51. doi: 10.1089/jamp.2013.1117 CrossRefGoogle Scholar
  15. 15.
    Kasper JY, Hermanns MI, Unger RE, Kirkpatrick CJ (2015) A responsive human triple-culture model of the air–blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med. doi: 10.1002/term.2032 Google Scholar
  16. 16.
    Klein SG, Serchi T, Hoffmann L, Blömeke B, Gutleb AC (2013) An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol 10(1):1–18. doi: 10.1186/1743-8977-10-31 CrossRefGoogle Scholar
  17. 17.
    Rothen-Rutishauser BM, Kiama SG, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32(4):281–289. doi: 10.1165/rcmb.2004-0187OC CrossRefGoogle Scholar
  18. 18.
    Ye D, Dawson KA, Lynch I (2015) A TEM protocol for quality assurance of in vitro cellular barrier models and its application to the assessment of nanoparticle transport mechanisms across barriers. Analyst 140(1):83–97. doi: 10.1039/C4AN01276C CrossRefGoogle Scholar
  19. 19.
    Sporty JL, Horálková L, Ehrhardt C (2008) In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 4(4):333–345. doi: 10.1517/17425255.4.4.333 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Nastassja A. Lewinski
    • 1
    • 2
    Email author
  • Nathan J. Liu
    • 1
    • 3
  • Akrivi Asimakopoulou
    • 4
  • Eleni Papaioannou
    • 4
  • Athanasios Konstandopoulos
    • 4
    • 5
  • Michael Riediker
    • 1
    • 6
  1. 1.Institute for Work and Health (IST)University of LausanneLausanneSwitzerland
  2. 2.Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Medicine, Weill Cornell Medical CollegeCornell UniversityNew YorkUSA
  4. 4.Aerosol and Particle Technology Laboratory, CPERI/CERTHThessalonikiGreece
  5. 5.Department of Chemical EngineeringAristotle UniversityThessalonikiGreece
  6. 6.SAFENANO, IOM SingaporeSingaporeSingapore

Personalised recommendations