NanoScript: A Versatile Nanoparticle-Based Synthetic Transcription Factor for Innovative Gene Manipulation

  • Kholud Dardir
  • Christopher Rathnam
  • Ki-Bum LeeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1570)


Cellular reprogramming and stem cell-based therapies have shown tremendous potential in the field of regenerative medicine. To that end, developing tools to control stem cell fate is an attractive area of research for replacing damaged and diseased cells and reestablishing functional connections for tissue repair. Transcription factor (TFs) proteins are well known to regulate gene expression and direct stem cell fate. Inspired by natural TFs, NanoScript, a nanoparticle (NP)-based platform, mimics TFs to afford control over gene expression and stem cell fate for regenerative medicine. Here, we describe the construction of the NanoScript platform, which is designed with tunable properties to replicate the structure and function of TFs to bind to specific portions of the genome and regulate gene expression in a way that does not involve viral delivery.

Key words

NanoScript Nanoparticle Transcription factor Gene manipulation Nonviral delivery Gene regulation 


  1. 1.
    Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432CrossRefGoogle Scholar
  2. 2.
    Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626CrossRefGoogle Scholar
  3. 3.
    Patel S, Jung D, Yin PT, Carlton P, Yamamoto M, Bando T, Sugiyama H, Lee K-B (2014) NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 9:8959–8967CrossRefGoogle Scholar
  4. 4.
    Patel S, Yin PT, Sugiyama H, Lee K-B (2015) Inducing stem cell myogenesis using NanoScript. ACS Nano 9:6909–6917CrossRefGoogle Scholar
  5. 5.
    Patel S, Pongkulapa T, Yin PT, Pandian G, Rathnam C, Bando T, Vaijayanthi T, Sugiyama H, Lee K-B (2015) Integrating epigenetic modulators into NanoScript for enhanced chondrogenesis of stem cells. J Am Chem Soc 137:4598–4601CrossRefGoogle Scholar
  6. 6.
    Patel S, Chueng STD, Yin PT, Dardir K, Song Z, Pasquale N, Kwan K, Sugiyama H, Lee K-B (2015) Induction of stem-cell-derived functional neurons by NanoScript-based gene repression. Angew Chem Int Ed Engl 54:11983–11988CrossRefGoogle Scholar
  7. 7.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294CrossRefGoogle Scholar
  8. 8.
    Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRefGoogle Scholar
  9. 9.
    Lim J, Majetich SA (2013) Composite magnetic–plasmonic nanoparticles for biomedicine: manipulation and imaging. Nano Today 8:98–113CrossRefGoogle Scholar
  10. 10.
    Robertson KD (2002) DNA methylation and chromatin: unraveling the tangled web. Oncogene 21:5361–5379CrossRefGoogle Scholar
  11. 11.
    Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299CrossRefGoogle Scholar
  12. 12.
    Melander C, Burnett R, Gottesfeld JM (2004) Regulation of gene expression with pyrrole_imidazole polyamides. J Biotechnol 112:195–220CrossRefGoogle Scholar
  13. 13.
    Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643CrossRefGoogle Scholar
  14. 14.
    Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241CrossRefGoogle Scholar
  15. 15.
    Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068CrossRefGoogle Scholar
  16. 16.
    Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1. doi: 10.3402/nano.v1i0.4889
  17. 17.
    Ter-Avetisyan G et al (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378CrossRefGoogle Scholar
  18. 18.
    Newmeyer DD, Forbes DJ (1988) Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52:641–653CrossRefGoogle Scholar
  19. 19.
    Pilch DS, Poklar N, Baird EE, Dervan PB, Breslauer KJ (1999) The thermodynamics of polyamide−DNA recognition: hairpin polyamide binding in the Minor Groove of duplex DNA. Biochemistry 38:2143–2151CrossRefGoogle Scholar
  20. 20.
    Nyanguile O, Uesugi M, Austin DJ, Verdine GL (1997) A nonnatural transcriptional coactivator. Proc Natl Acad Sci 94:13402–13406CrossRefGoogle Scholar
  21. 21.
    Chen G, Courey AJ (2000) Groucho/TLE family proteins and transcriptional repression. Gene 249:1–16CrossRefGoogle Scholar
  22. 22.
    Shah BP, Pasquale N, De G, Tan T, Ma J, Lee K-B (2014) Core–shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 8:9379–9387CrossRefGoogle Scholar
  23. 23.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Kholud Dardir
    • 1
  • Christopher Rathnam
    • 1
  • Ki-Bum Lee
    • 1
    Email author
  1. 1.Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA

Personalised recommendations