Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device

Part of the Methods in Molecular Biology book series (MIMB, volume 1568)


This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

Key words

Automated vitrification Digital microfluidics Embryo vitrification 



This work was supported by the Grants from NSERC (Natural Sciences and Engineering Research Council of Canada) via a Discovery Grant and the Canada Research Chairs Program.


  1. 1.
    Pyne DG, Liu J, Abdelgawad M, Sun Y (2014) Digital microfluidic processing of mammalian embryos for vitrification. PLoS One 9(9):e108128CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pegg DE (2010) The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60:S36–S44CrossRefPubMedGoogle Scholar
  3. 3.
    Whittingham D (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126CrossRefPubMedGoogle Scholar
  4. 4.
    Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19CrossRefPubMedGoogle Scholar
  5. 5.
    Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 12:779–796CrossRefPubMedGoogle Scholar
  6. 6.
    Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–575CrossRefPubMedGoogle Scholar
  7. 7.
    AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J (2010) Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online 20:209–222CrossRefPubMedGoogle Scholar
  8. 8.
    Pollack MG, Fair RB (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRefGoogle Scholar
  9. 9.
    Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542CrossRefPubMedGoogle Scholar
  10. 10.
    Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225CrossRefPubMedGoogle Scholar
  11. 11.
    Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S et al (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Park S, Wijethunga PAL, Moon H, Han B (2011) On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. Lab Chip 11:2212–2221CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Heo YS, Lee H-J, Hassell BA, Irimia D, Toth TL et al (2011) Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 11:3530–3537CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lai D, Ding J, Smith GD, Takayama S (2013) Automated microfluidic gradient cryoprotectant exchange platform for murine oocyte and zygote vitrification reduces osmotic stress and improves embryo developmental competence. Fertil Steril 100:S107CrossRefGoogle Scholar
  15. 15.
    Song YS, Moon S, Hulli L, Hasan SK, Kayaalp E et al (2009) Microfluidics for cryopreservation. Lab Chip 9:1874–1881CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ali J, Shelton JN (1993) Design of vitrification solutions for the cryopreservation of embryos. J Reprod Fertil 99:471–477CrossRefPubMedGoogle Scholar
  17. 17.
    Berthier J, Clementz P, Roux J, Fouillet Y, Peponnet C (2006) Modeling microdrop motion between covered and open regions of EWOD microsystems. NSTI Nanotechnology Conference and Trade Show Boston, USA, Vol. 1. pp. 685–688.Google Scholar
  18. 18.
    Swain JE, Lai D, Takayama S, Smith GD (2013) Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip 13:1213–1224CrossRefPubMedGoogle Scholar
  19. 19.
    Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T (1998) Cryopreservation of mature bovine oocytes by vitrification in straws. Cryobiology 37:77–85CrossRefPubMedGoogle Scholar
  20. 20.
    Nakao K, Nakagata N, Katsuki M (1997) Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Exp Anim 46(3):231–234CrossRefPubMedGoogle Scholar
  21. 21.
    Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614CrossRefPubMedGoogle Scholar
  22. 22.
    Martino A, Songsasen N, Leibo SP (1996) Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod 54:1059–1069CrossRefPubMedGoogle Scholar
  23. 23.
    Au SH, Kumar P, Wheeler AR (2011) A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27:8586–8594CrossRefPubMedGoogle Scholar
  24. 24.
    Luk VN, Mo GC, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389CrossRefPubMedGoogle Scholar
  25. 25.
    Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315CrossRefPubMedGoogle Scholar
  26. 26.
    Jönsson-Niedziółka M, Lapierre F, Coffinier Y, Parry SJ, Zoueshtiagh F et al (2011) EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11:490–496CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Mechanical EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations