Mitochondria pp 315-336 | Cite as

Analysis of Mitochondrial Membrane Protein Complexes by Electron Cryo-tomography

  • Vicki A. M. Gold
  • Tobias Brandt
  • Laetitia Cavellini
  • Mickael M. Cohen
  • Raffaele Ieva
  • Martin van der Laan
Part of the Methods in Molecular Biology book series (MIMB, volume 1567)


The visualization of membrane protein complexes in their natural membrane environment is a major goal in an emerging area of research termed structural cell biology. Such approaches provide important information on the spatial distribution of protein complexes in their resident cellular membrane systems and on the structural organization of multi-subunit membrane protein assemblies. We have developed a method to specifically label active membrane protein complexes in their native membrane environment with electron-dense nanoparticles coupled to an activating ligand, in order to visualize them by electron cryo-tomography. As an example, we describe here the depiction of preprotein import sites of mitochondria, formed by the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Active import sites are selectively labeled via a biotinylated, quantum dot-coupled preprotein that is arrested in translocation across the outer and inner mitochondrial membranes. Additionally, a related method is described for direct labeling of mitochondrial outer membrane proteins that does not depend on binding of a ligand.

Key words

Electron cryo-tomography Quantum dots Mitochondria Protein translocation Membrane proteins TOM complex Presequence translocase 



We thank Werner Kühlbrandt for discussion and critical reading of the manuscript. This work was supported by the Max Planck Society (V.A.M.G., T.B.), the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 746) (M.v.d.L), the Excellence Initiative of the German Federal & State Governments (EXC 294 BIOSS) (M.v.d.L.), the CNRS-INSERM ATIP-Avenir program (M.C., R.I.), the “fondation pour la recherche médicale” (INE 20100518343) (M.C.), the labex DYNAMO (ANR-11-LABX-0011-DYNAMO) (M.C.), a Marie Curie IRG grant to M.C. (No.276912), and an EMBO Long-Term Fellowship to V.A.M.G. (ALTF 1035-2010).


  1. 1.
    Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: applications to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  2. 2.
    Irobalieva RN, Martins B, Medalia O (2016) Cellular structural biology as revealed by cryo-electron tomography. J Cell Sci 129:469–476CrossRefPubMedGoogle Scholar
  3. 3.
    Davies KM, Daum B (2013) Role of cryo-ET in membrane bioenergetics research. Biochem Soc Trans 41:1227–1234CrossRefPubMedGoogle Scholar
  4. 4.
    Gold VA, Ieva R, Walter A et al (2014) Visualizing active membrane protein complexes by electron cryo-tomography. Nat Commun 5:4129CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Endo T, Yamano K, Kawano S (2011) Structural insight into the mitochondrial protein import system. Biochim Biophys Acta 1808:955–970CrossRefPubMedGoogle Scholar
  6. 6.
    Harbauer AB, Zahedi RP, Sickmann A et al (2014) The protein import machinery of mitochondria – a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372CrossRefPubMedGoogle Scholar
  7. 7.
    Wenz LS, Opaliński Ł, Wiedemann N et al (2015) Cooperation of protein machineries in mitochondrial protein sorting. Biochim Biophys Acta 1853:119–1129CrossRefGoogle Scholar
  8. 8.
    Mokranjac D, Neupert W (2010) The many faces of the mitochondrial TIM23 complex. Biochim Biophys Acta 1797:1045–1054CrossRefPubMedGoogle Scholar
  9. 9.
    Schulz C, Schendzielorz A, Rehling P (2015) Unlocking the presequence import pathway. Trends Cell Biol 25:265–275CrossRefPubMedGoogle Scholar
  10. 10.
    Dudek J, Rehling P, van der Laan M (2013) Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta 1833:274–285CrossRefPubMedGoogle Scholar
  11. 11.
    Dekker PJ, Martin F, Maarse AC et al (1997) The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO J 16:5408–5419CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Popov-Celeketić D, Mapa K, Neupert W et al (2008) Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. EMBO J 27:1469–1480PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tamura Y, Harada Y, Shiota T et al (2009) Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J Cell Biol 184:129–141CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ieva R, Schrempp SG, Opaliński Ł et al (2014) Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol Cell 56:641–652CrossRefPubMedGoogle Scholar
  15. 15.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Howarth M, Takao K, Hayashi Y et al (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51CrossRefPubMedGoogle Scholar
  18. 18.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  19. 19.
    Gebert M, Schrempp SG, Mehnert CS et al (2012) Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J Cell Biol 197:595–604CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sirrenberg C, Endres M, Becker K et al (1997) Functional cooperation and stoichiometry of protein translocases of the outer and inner membranes of mitochondria. J Biol Chem 272:29963–29966CrossRefPubMedGoogle Scholar
  21. 21.
    Davies KM, Daum B, Gold VA et al (2014) Visualization of ATP synthase dimers in mitochondria by electron cryo-tomography. J Vis Exp 91:51228Google Scholar
  22. 22.
    Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752CrossRefPubMedGoogle Scholar
  23. 23.
    Hoppins S, Horner J, Song C et al (2009) Mitochondrial outer and inner membrane fusion requires a modified carrier protein. J Cell Biol 184:569–581CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meisinger C, Pfanner N, Truscott KN (2006) Isolation of yeast mitochondria. Methods Mol Biol 313:33–39PubMedGoogle Scholar
  25. 25.
    Vögtle FN, Schmidt O, Chacinska A et al (2010) Native techniques for analysis of mitochondrial protein import. Methods Mol Biol 619:425–436CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Vicki A. M. Gold
    • 1
    • 7
  • Tobias Brandt
    • 1
  • Laetitia Cavellini
    • 2
  • Mickael M. Cohen
    • 2
  • Raffaele Ieva
    • 3
    • 4
  • Martin van der Laan
    • 3
    • 5
    • 6
  1. 1.Department of Structural BiologyMax-Planck-Institute of BiophysicsFrankfurt am MainGermany
  2. 2.Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-ChimiqueSorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8226ParisFrance
  3. 3.Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  4. 4.Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre de Biologie Intégrative (CBI)Université de Toulouse, CNRS,UPSToulouseFrance
  5. 5.BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
  6. 6.Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
  7. 7.Living Systems InstituteUniversity of ExeterExeterUK

Personalised recommendations