Skip to main content
View expanded cover

Mitochondria pp 179–195Cite as

Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast

Part of the Methods in Molecular Biology book series (MIMB,volume 1567)

Abstract

Eukaryotic cells are defined by the existence of subcellular compartments and organelles. The localization of a protein to a specific subcellular compartment is one of the most fundamental processes of a living cell. It is well documented that in eukaryotic cells molecules of a single protein can be located in more than one subcellular compartment, a phenomenon termed dual targeting, bimodal targeting, or dual localization. Recently, growing evidence started to accumulate for abundant dual targeting of mitochondrial proteins, which are localized to a second location in the cell, besides this specific organelle. We have termed these dual localized proteins echoforms or echoproteins (echo in Greek denotes repetition). As the research on dual targeting of proteins is developing and evidence is accumulating for high abundance of the phenomenon, there is a growing need for new methods that would allow the identification of dual localized proteins and analysis of their functions in each subcellular compartment. This is particularly critical for single translation products that are encoded by the same gene and are actually derived from the same protein but nevertheless distribute between different subcellular compartments. The above considerations have led us to develop several approaches for studying dual localized proteins and their dual function. These include an α-complementation-based assay, specific depletion, and selection of the individual echoproteins.

Key words

  • Dual-targeting
  • Dual-function
  • Mitochondria
  • Saccharomyces-cerevisiae
  • Mitochondrial targeting sequence (MTS)

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6824-4_11
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6824-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lister R, Hulett JM, Lithgow T, Whelan J (2005) Protein import into mitochondria: origins and functions today (review). Mol Membr Biol 22(1–2):87–100

    CAS  CrossRef  PubMed  Google Scholar 

  2. Mokranjac D, Neupert W (2005) Protein import into mitochondria. Biochem Soc Trans 33(Pt 5):1019–1023. doi:10.1042/BST20051019

    CAS  CrossRef  PubMed  Google Scholar 

  3. Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279(15):14473–14476. doi:10.1074/jbc.R400003200

    CAS  CrossRef  PubMed  Google Scholar 

  4. Avadhani NG, Sangar MC, Bansal S, Bajpai P (2011) Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J 278(22):4218–4229. doi:10.1111/j.1742-4658.2011.08356.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Knockaert L, Fromenty B, Robin MA (2011) Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS J 278(22):4252–4260. doi:10.1111/j.1742-4658.2011.08357.x

    CAS  CrossRef  PubMed  Google Scholar 

  6. Raza H (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 278(22):4243–4251. doi:10.1111/j.1742-4658.2011.08358.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Ben-Menachem R, Tal M, Shadur T, Pines O (2011) A third of the yeast mitochondrial proteome is dual localized: a question of evolution. Proteomics 11(23):4468–4476. doi:10.1002/pmic.201100199

    CAS  CrossRef  PubMed  Google Scholar 

  8. Kisslov I, Naamati A, Shakarchy N, Pines O (2014) Dual-targeted proteins tend to be more evolutionarily conserved. Mol Biol Evol 31(10):2770–2779. doi:10.1093/molbev/msu221

    CAS  CrossRef  PubMed  Google Scholar 

  9. Dinur-Mills M, Tal M, Pines O (2008) Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS One 3(5):e2161. doi:10.1371/journal.pone.0002161

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Kalderon B, Kogan G, Bubis E, Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290(6):3542–3551. doi:10.1074/jbc.M114.626622

    CAS  CrossRef  PubMed  Google Scholar 

  11. Yogev O, Naamati A, Pines O (2011) Fumarase: a paradigm of dual targeting and dual localized functions. FEBS J 278(22):4230–4242. doi:10.1111/j.1742-4658.2011.08359.x

    CAS  CrossRef  PubMed  Google Scholar 

  12. Karniely S, Pines O (2005) Single translation--dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 6(5):420–425. doi:10.1038/sj.embor.7400394

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691. doi:10.1038/nature02026

    CAS  CrossRef  PubMed  Google Scholar 

  14. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16(6):707–719. doi:10.1101/gad.970902

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Regev-Rudzki N, Pines O (2007) Eclipsed distribution: a phenomenon of dual targeting of protein and its significance. Bioessays 29(8):772–782. doi:10.1002/bies.20609

    CAS  CrossRef  PubMed  Google Scholar 

  16. Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O (2005) Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 16(9):4163–4171. doi:10.1091/mbc.E04-11-1028

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Burak E, Yogev O, Sheffer S, Schueler-Furman O, Pines O (2013) Evolving dual targeting of a prokaryotic protein in yeast. Mol Biol Evol 30(7):1563–1573. doi:10.1093/molbev/mst039

    CAS  CrossRef  PubMed  Google Scholar 

  18. Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 284(44):30200–30208. doi:10.1074/jbc.M109.034694

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Karniely S, Rayzner A, Sass E, Pines O (2006) Alpha-complementation as a probe for dual localization of mitochondrial proteins. Exp Cell Res 312(19):3835–3846. doi:10.1016/j.yexcr.2006.08.021

    CAS  CrossRef  PubMed  Google Scholar 

  20. Abbas-Terki T, Picard D (1999) Alpha-complemented beta-galactosidase. An in vivo model substrate for the molecular chaperone heat-shock protein 90 in yeast. Eur J Biochem 266(2):517–523

    CAS  CrossRef  PubMed  Google Scholar 

  21. Mueller JC, Andreoli C, Prokisch H, Meitinger T (2004) Mechanisms for multiple intracellular localization of human mitochondrial proteins. Mitochondrion 3(6):315–325. doi:10.1016/j.mito.2004.02.002

    CAS  CrossRef  PubMed  Google Scholar 

  22. Shlevin L, Regev-Rudzki N, Karniely S, Pines O (2007) Location-specific depletion of a dual-localized protein. Traffic 8(2):169–176. doi:10.1111/j.1600-0854.2006.00518.x

    CAS  CrossRef  PubMed  Google Scholar 

  23. Gilon T, Chomsky O, Kulka RG (1998) Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J 17(10):2759–2766. doi:10.1093/emboj/17.10.2759

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A, Trochesset M, Morse D, Krogan NJ, Hiley SL, Li Z, Morris Q, Grigull J, Mitsakakis N, Roberts CJ, Greenblatt JF, Boone C, Kaiser CA, Andrews BJ, Hughes TR (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118(1):31–44. doi:10.1016/j.cell.2004.06.013

    CAS  CrossRef  PubMed  Google Scholar 

  25. Gibson DG, Smith HO, Hutchison CA III, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7(11):901–903. doi:10.1038/nmeth.1515

    CAS  CrossRef  PubMed  Google Scholar 

  26. Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, Pines O (2010) Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol 8(3):e1000328. doi:10.1371/journal.pbio.1000328

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Ben-Menachem R, Regev-Rudzki N, Pines O (2011) The aconitase C-terminal domain is an independent dual targeting element. J Mol Biol 409(2):113–123. doi:10.1016/j.jmb.2011.03.045

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophry Pines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ben-Menachem, R., Pines, O. (2017). Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast. In: Mokranjac, D., Perocchi, F. (eds) Mitochondria. Methods in Molecular Biology, vol 1567. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6824-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6824-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6822-0

  • Online ISBN: 978-1-4939-6824-4

  • eBook Packages: Springer Protocols