Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry

Part of the Methods in Molecular Biology book series (MIMB, volume 1566)


Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.

Key words

Indirect calorimetry Energy expenditure Metabolic rate Oxygen consumption Obesity 



This work was supported by NIH R01DK092605. Q.T. is the holder of Cullen Chair in Molecular Medicine and Welch Research Scholar (L-AU0002) of the University of Texas McGovern Medical School.


  1. 1.
    Ryan KK, Woods SC, Seeley RJ (2012) Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 15(2):137–149CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Heitmann BL, Westerterp KR, Loos RJ, Sorensen TI, O'Dea K, McLean P, Jensen TK, Eisenmann J, Speakman JR, Simpson SJ, Reed DR, Westerterp-Plantenga MS (2012) Obesity: lessons from evolution and the environment. Obes Rev 13(10):910–922CrossRefPubMedGoogle Scholar
  3. 3.
    Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887CrossRefPubMedGoogle Scholar
  4. 4.
    Jung RT, Shetty PS, James WP, Barrand MA, Callingham BA (1979) Reduced thermogenesis in obesity. Nature 279(5711):322–323CrossRefPubMedGoogle Scholar
  5. 5.
    Frankenfield DC (2010) On heat, respiration, and calorimetry. Nutrition 26(10):939–950CrossRefPubMedGoogle Scholar
  6. 6.
    Roberts L (1991) A word and the world: the significance of naming the calorimeter. Isis 82:199–222Google Scholar
  7. 7.
    Levine JA (2005) Measurement of energy expenditure. Public Health Nutr 8(7A):1123–1132CrossRefPubMedGoogle Scholar
  8. 8.
    Maclagan NF, Sheahan MM (1950) The measurement of oxygen consumption in small animals by a closed circuit method. J Endocrinol 6(4):456–462CrossRefPubMedGoogle Scholar
  9. 9.
    Xu Y, Wu Z, Sun H, Zhu Y, Kim ER, Lowell BB, Arenkiel BR, Xu Y, Tong Q (2013) Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 18(6):860–870CrossRefPubMedGoogle Scholar
  10. 10.
    Kong D, Tong Q, Ye C, Koda S, Fuller PM, Krashes MJ, Vong L, Ray RS, Olson DP, Lowell BB (2012) GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151(3):645–657CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, Derbenev AV, Zsombok A, Munzberg H (2014) Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab 3(7):681–693CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rothwell NJ, Stock MJ (1982) Energy expenditure of ‘cafeteria’-fed rats determined from measurements of energy balance and indirect calorimetry. J Physiol 328:371–377CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94CrossRefPubMedGoogle Scholar
  14. 14.
    Crane JD, Palanivel R, Mottillo EP, Bujak AL, Wang H, Ford RJ, Collins A, Blumer RM, Fullerton MD, Yabut JM, Kim JJ, Ghia JE, Hamza SM, Morrison KM, Schertzer JD, Dyck JR, Khan WI, Steinberg GR (2015) Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 21(2):166–172CrossRefPubMedGoogle Scholar
  15. 15.
    Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843–845CrossRefPubMedGoogle Scholar
  16. 16.
    Dewar AD, Newton WH (1948) The relationship between food intake and respiratory quotient in mice. Br J Nutr 2(2):142–145CrossRefPubMedGoogle Scholar
  17. 17.
    Guo J, Hall KD (2009) Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput Biol 5(9):e1000511CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64(7):2346–2351CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9(1):57–63CrossRefGoogle Scholar
  20. 20.
    Kaiyala KJ, Schwartz MW (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60(1):17–23CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Brown Foundation Institute of Molecular MedicineUniversity of Texas McGovern Medical SchoolHoustonUSA
  2. 2.Department of Neurobiology and AnatomyUniversity of Texas McGovern Medical SchoolHoustonUSA

Personalised recommendations