Targeted Ablation Using Laser Nanosurgery

  • Naga Venkata Gayathri Vegesna
  • Paolo Ronchi
  • Sevi Durdu
  • Stefan Terjung
  • Rainer Pepperkok
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)


Laser-mediated dissection methods have been used for many years to micro-irradiate biological samples, but recent technological progress has rendered this technique more precise, powerful, and easy to use. Today pulsed lasers can be operated with diffraction limited, sub-micrometer precision to ablate intracellular structures. Here, we discuss laser nanosurgery setups and the instrumentation in our laboratory. We describe how to use this technique to ablate cytoskeletal elements in living cells. We also show how this technique can be used in multicellular organisms, to micropuncture and/or ablate cells of interest and finally how to monitor a successful laser nanosurgery.

Key words

Laser nanosurgery Subcellular structures Laser ablation Micropuncture Photobleach 


  1. 1.
    Amy RL, Storb R (1965) Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study. Science 150(3697):756–758CrossRefPubMedGoogle Scholar
  2. 2.
    Berns W, Strahs R (1979) Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart. Exp Cell Res 119(2)Google Scholar
  3. 3.
    Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. Biol Chem 393(April):235–248PubMedGoogle Scholar
  4. 4.
    Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E et al (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122(11):1928–1928CrossRefGoogle Scholar
  5. 5.
    Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10(12):1401–1410CrossRefPubMedGoogle Scholar
  6. 6.
    Tängemo C, Ronchi P, Colombelli J, Haselmann U, Simpson JC, Antony C et al (2011) A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. J Cell Sci 124(Pt 6):978–987CrossRefPubMedGoogle Scholar
  7. 7.
    Ronchi P, Tischer C, Acehan D, Pepperkok R (2014) Positive feedback between golgi membranes, microtubules and ER-exit sites directs golgi de novo biogenesis. J Cell Sci 4:4620–4633CrossRefGoogle Scholar
  8. 8.
    Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432(7019):822CrossRefPubMedGoogle Scholar
  9. 9.
    Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking beta-spectrin. J Cell Biol 176(3):269–275CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929CrossRefPubMedGoogle Scholar
  11. 11.
    Chown MG, Kumar S (2007) Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale. Int J Nanomedicine 2(3):333–344CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Khodjakov A, La Terra S, Chang F (2004) Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B. Curr Biol 14(15):1330–1340CrossRefPubMedGoogle Scholar
  13. 13.
    Shimada T, Watanabe W, Matsunaga S, Higashi T, Ishii H, Fukui K et al (2005) Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator. Opt Express 13(24):9869–9880CrossRefPubMedGoogle Scholar
  14. 14.
    Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31(3):365–374CrossRefPubMedGoogle Scholar
  15. 15.
    Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599CrossRefPubMedGoogle Scholar
  16. 16.
    Bargmann CI, Horvitz HR (1991) Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251(4998):1243–1246CrossRefPubMedGoogle Scholar
  17. 17.
    Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110(1):17–72PubMedPubMedCentralGoogle Scholar
  18. 18.
    McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364(6435):337–341CrossRefPubMedGoogle Scholar
  19. 19.
    Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3(4):473–485CrossRefPubMedGoogle Scholar
  20. 20.
    Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527CrossRefPubMedGoogle Scholar
  21. 21.
    Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5(4):956–964PubMedGoogle Scholar
  22. 22.
    Gabel CV, Gabel H, Pavlichin D, Kao A, Clark DA, Samuel ADT (2007) Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J Neurosci 27(28):7586–7596CrossRefPubMedGoogle Scholar
  23. 23.
    Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102(9):3184–3191CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440(7084):684–687CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tsalik EL, Hobert O (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56(2):178–197CrossRefPubMedGoogle Scholar
  26. 26.
    Ward A, Liu J, Feng Z, Xu XZS (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11(8):916–922CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Durdu S, Iskar M, Revenu C, Schieber N, Kunze A, Bork P et al (2014) Luminal signalling links cell communication to tissue architecture during organogenesis. Nature 515(7525):120–124CrossRefPubMedGoogle Scholar
  28. 28.
    Bedzhov I, Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156(5):1032–1044CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Harding MJ, McGraw HF, Nechiporuk A (2014) The roles and regulation of multicellular rosette structures during morphogenesis. Development 141(13):2549–2558CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500(7461):217–221CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bishop D, Nikić I, Brinkoetter M, Knecht S, Potz S, Kerschensteiner M et al (2011) Near-infrared branding efficiently correlates light and electron microscopy. Nat Methods 8(7):568–570CrossRefPubMedGoogle Scholar
  32. 32.
    Karreman MA, Mercier L, Schieber NL, Shibue T, Schwab Y, Goetz JG (2014) Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points. PLoS One 9(12):e114448CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Colombelli J, Tängemo C, Haselman U, Antony C, Stelzer EHK, Pepperkok R et al (2008) A correlative light and electron microscopy method based on laser micropatterning and etching. Methods Mol Biol 457:203–213CrossRefPubMedGoogle Scholar
  34. 34.
    Ronchi P, Pepperkok R (2013) Golgi depletion from living cells with laser nanosurgery. Methods Cell Biol 118: 311–324. 1st ednGoogle Scholar
  35. 35.
    Kolotuev I, Bumbarger DJ, Labouesse M, Schwab Y (2012) Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms. Methods Cell Biol 111:203–222CrossRefPubMedGoogle Scholar
  36. 36.
    Horneffer V, Linz N, Vogel A (2007) Principles of laser-induced separation and transport of living cells. J Biomed Opt 12(5):54016CrossRefGoogle Scholar
  37. 37.
    Solon J, Kaya-Çopur A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137(7):1331–1342CrossRefPubMedGoogle Scholar
  38. 38.
    Caussinus E, Colombelli J, Affolter M (2008) Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr Biol 18(22):1727–1734CrossRefPubMedGoogle Scholar
  39. 39.
    Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M et al (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9(2):504–513CrossRefPubMedGoogle Scholar
  40. 40.
    Raabe I, Vogel SK, Peychl J, Tolić-Nørrelykke IM (2009) Intracellular nanosurgery and cell enucleation usinga picosecond laser. J Microsc 234:1–8CrossRefPubMedGoogle Scholar
  41. 41.
    Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A et al (2014) Mechanism of Ca(2)(+)-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 5:5646CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Perez F, Piel M (2015) Laser induced wounding of the plasma membrane and methods to study the repair process. Methods Cell Biol 125:391–408CrossRefPubMedGoogle Scholar
  43. 43.
    Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13(7):771–778CrossRefPubMedGoogle Scholar
  44. 44.
    Rauzi M, Lenne P-F, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468(7327):1110–1114CrossRefPubMedGoogle Scholar
  45. 45.
    Colombelli J, Solon J (2013) Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res 352(1):133–147CrossRefPubMedGoogle Scholar
  46. 46.
    Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg CP (2015) UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. Methods Mol Biol 1189:219–235CrossRefPubMedGoogle Scholar
  47. 47.
    Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH (2007) Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 15(10):6420–6430CrossRefPubMedGoogle Scholar
  48. 48.
    Rauzi M, Krzic U, Saunders TE, Krajnc M, Ziherl P, Hufnagel L et al (2015) Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nat Commun 6:8677CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047CrossRefGoogle Scholar
  50. 50.
    Sacconi L, Tolić-Nørrelykke IM, Antolini R, Pavone FS (2005) Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope. J Biomed Opt 10(1):14002CrossRefPubMedGoogle Scholar
  51. 51.
    Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10(12):1401–1410CrossRefPubMedGoogle Scholar
  52. 52.
    Colombelli J, Reynaud EG, Rietdorf J, Pepperkok R, Stelzer EHK (2005) In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6(12):1093–1102CrossRefPubMedGoogle Scholar
  53. 53.
    Colombelli J, Solon J (2013) Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res 352(1):133–147CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q et al (2014) Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell 28(3):295–309CrossRefPubMedGoogle Scholar
  55. 55.
    Travers RJ, Shenoi RA, Kalathottukaren MT, Kizhakkedathu JN, Morrissey JH (2014) Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 124(22):3183–3190CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sumida GM, Tomita TM, Shih W, Yamada S (2011) Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. BMC Cell Biol 12(1):48CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vogel A, Horneffer V, Lorenz K, Linz N, Huttmann G, Gebert A (2007) Principles of laser microdissection and catapulting of histologic specimens and live cells. Methods Cell Biol 82:153–205CrossRefPubMedGoogle Scholar
  58. 58.
    Vogel A, Noack J (2001) Numerical simulations of optical breakdown for cellular surgery at nanosecond to femtosecond time scales. In: Proc. SPIE 4260, Optical Diagnostics of Living Cells IV, p 83–93. Accessed from doi: 10.1117/12.426762
  59. 59.
    Kuetemeyer K, Rezgui R, Lubatschowski H, Heisterkamp A (2010) Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery. Biomed Opt Express 1(2):587–597CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Botvinick EL, Venugopalan V, Shah JV, Liaw LH, Berns MW (2004) Controlled ablation of microtubules using a picosecond laser. Biochem J 87:4203–4212Google Scholar
  61. 61.
    Aist JR, Liang H, Berns MW (1993) Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci 104(4):1207–1216PubMedGoogle Scholar
  62. 62.
    Heisterkamp A, Maxwell IZ, Mazur E, Underwood JM, Nickerson JA, Kumar S et al (2005) Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Express 13:3690–3696CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Naga Venkata Gayathri Vegesna
    • 1
  • Paolo Ronchi
    • 1
    • 2
  • Sevi Durdu
    • 1
  • Stefan Terjung
    • 3
  • Rainer Pepperkok
    • 1
    • 3
  1. 1.Cell Biology and Cell Biophysics UnitEMBL HeidelbergHeidelbergGermany
  2. 2.Electron Microscopy Core FacilityEMBL HeidelbergHeidelbergGermany
  3. 3.Advanced Light Microscopy FacilityEMBL HeidelbergHeidelbergGermany

Personalised recommendations