Advertisement

Automated Analysis of Intracellular Dynamic Processes

  • Yao Yao
  • Ihor Smal
  • Ilya Grigoriev
  • Maud Martin
  • Anna Akhmanova
  • Erik MeijeringEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)

Abstract

The study of intracellular dynamic processes is of fundamental importance for understanding a wide variety of diseases and developing effective drugs and therapies. Advanced fluorescence microscopy imaging systems nowadays allow the recording of virtually any type of process in space and time with super-resolved detail and with high sensitivity and specificity. The large volume and high information content of the resulting image data, and the desire to obtain objective, quantitative descriptions and biophysical models of the processes of interest, require a high level of automation in data analysis. Two key tasks in extracting biologically meaningful information about intracellular dynamics from image data are particle tracking and particle trajectory analysis. Here we present state-of-the-art software tools for these tasks and describe how to use them.

Key words

Intracellular dynamics Fluorescence microscopy Image analysis Particle tracking Trajectory analysis Feature extraction Feature visualization Software tools 

Notes

Acknowledgments

This work was supported by the Dutch Technology Foundation (STW Grants 10443 and 13391).

References

  1. 1.
    Moser M, Frühwirth M, Kenner T (2008) The symphony of life: importance, interaction, and visualization of biological rhythms. IEEE Eng Med Biol Mag 27:29–37CrossRefPubMedGoogle Scholar
  2. 2.
    Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726CrossRefPubMedGoogle Scholar
  3. 3.
    Spanjaard E, Smal I, Angelopoulos N, Verlaan I, Matov A, Meijering E, Wessels L, Bos H, de Rooij J (2015) Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. Exp Cell Res 330:382–397CrossRefPubMedGoogle Scholar
  4. 4.
    Reuter M, Zelensky A, Smal I, Meijering E, van Cappellen WA, de Gruiter HM, van Belle GJ, van Royen ME, Houtsmuller AB, Essers J, Kanaar R, Wyman C (2014) BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J Cell Biol 207:599–613CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919CrossRefPubMedGoogle Scholar
  6. 6.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  7. 7.
    Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86CrossRefPubMedGoogle Scholar
  8. 8.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rittscher J (2010) Characterization of biological processes through automated image analysis. Annu Rev Biomed Eng 12:315–344CrossRefPubMedGoogle Scholar
  10. 10.
    Danuser G (2011) Computer vision in cell biology. Cell 147:973–978CrossRefPubMedGoogle Scholar
  11. 11.
    Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE (2012) Biological imaging software tools. Nat Methods 9(7):697–710CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200CrossRefPubMedGoogle Scholar
  13. 13.
    Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smal I, Loog M, Niessen W, Meijering E (2010) Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans Med Imaging 29:282–301CrossRefPubMedGoogle Scholar
  15. 15.
    Ruusuvuori P, Aijö T, Chowdhury S, Garmendia-Torres C, Selinummi J, Birbaumer M, Dudley AM, Pelkmans L, Yli-Harja O (2010) Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images. BMC Bioinform 11:248CrossRefGoogle Scholar
  16. 16.
    Stěpka K, Matula P, Matula P, Wörz S, Rohr K, Kozubek M (2015) Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy. Cytometry A 87:759–772CrossRefPubMedGoogle Scholar
  17. 17.
    Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 12:717–724CrossRefPubMedGoogle Scholar
  18. 18.
    Smal I, Meijering E (2015) Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy. Med Image Anal 24:163–189CrossRefPubMedGoogle Scholar
  19. 19.
    Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KEG, Jaldén J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, de Solórzano CO, Olivo-Marin JC, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gal N, Lechtman-Goldstein D, Weihs D (2013) Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol Acta 52:425–443CrossRefGoogle Scholar
  21. 21.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  22. 22.
    Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30CrossRefPubMedGoogle Scholar
  23. 23.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  26. 26.
    Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang B, Zerubia J, Olivo-Marin JC (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Optics 46:1819–1829CrossRefGoogle Scholar
  29. 29.
    Olivo-Marin JC (2002) Extraction of spots in biological images using multiscale products. Pattern Recognit 35:1989–1996CrossRefGoogle Scholar
  30. 30.
    de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Montagner YL, Lagache T, Dufour A, Olivo-Marin JC (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yao Yao
    • 1
  • Ihor Smal
    • 1
  • Ilya Grigoriev
    • 2
  • Maud Martin
    • 2
  • Anna Akhmanova
    • 2
  • Erik Meijering
    • 1
    Email author
  1. 1.Departments of Medical Informatics and Radiology, Biomedical Imaging Group RotterdamErasmus University Medical CenterRotterdamThe Netherlands
  2. 2.Department of Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations