Detection of Peptide-Binding Sites on Protein Surfaces Using the Peptimap Server

  • Tanggis Bohnuud
  • George Jones
  • Ora Schueler-FurmanEmail author
  • Dima KozakovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1561)


Peptide-mediated interactions are of primordial importance to the cell, and the structure of such interaction provides an important starting point for their further characterization. In many cases, the structure of the peptide-protein complex has not been solved by experiment, and modeling tools need to be applied to generate structural models of the interaction. PeptiMap is a protocol that identifies the peptide-binding site when only the structure of the receptor is known, but no information about where the peptide binds is available. This is achieved by mapping the surface for solvents to identify ligand-binding sites, similar in approach to ANCHORMAP in which amino acids are mapped. Peptimap is a free open access web-based server. It can be accessed at

Key words

Peptide-protein interactions Binding site prediction Solvent mapping Peptide mapping 


  1. 1.
    Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3:e405CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040PubMedGoogle Scholar
  3. 3.
    Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Trellet M, Melquiond AS, Bonvin AM (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8, e58769CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27:2836–2842CrossRefPubMedGoogle Scholar
  6. 6.
    London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902CrossRefPubMedGoogle Scholar
  7. 7.
    Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14:595–599CrossRefPubMedGoogle Scholar
  8. 8.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534CrossRefPubMedGoogle Scholar
  9. 9.
    Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Bioinformatics 25:621–627CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S (2012) FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28:286–287CrossRefPubMedGoogle Scholar
  11. 11.
    Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10:733–755CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277CrossRefPubMedGoogle Scholar
  13. 13.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK (2007) Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 367:514–526CrossRefPubMedGoogle Scholar
  16. 16.
    Raaf J, Klopffleisch K, Issinger OG, Niefind K (2008) The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin. J Mol Biol 377:1–8CrossRefPubMedGoogle Scholar
  17. 17.
    Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43:D376–D381CrossRefPubMedGoogle Scholar
  18. 18.
    Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961CrossRefPubMedGoogle Scholar
  19. 19.
    Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T (2005) Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta 1753:191–208CrossRefPubMedGoogle Scholar
  20. 20.
    Jackson LP, Lewis M, Kent HM, Edeling MA, Evans PR, Duden R, Owen DJ (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23:1255–1262CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brooks BR III, Jr CLB, Nilsson ADM, Petrella L, Roux RJ, Won B, Archontis Y, Bartels G, Boresch C, Caflisch S, Caves A, Cui L, Dinner Q, Feig AR, Fischer M, Gao S, Hodoscek J, Im M, Kuczera W, Lazaridis K, Ma T, Ovchinnikov J, Paci V, Pastor E, Post RW, Pu CB, Schaefer JZ, Tidor M, Venable B, Woodcock RM, Wu HL, Yang X, York WDM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Department of Applied Mathematics and StatisticsStony Brook UniversityNew YorkUSA
  3. 3.Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations