Modeling Peptide-Protein Interactions pp 189-200

Part of the Methods in Molecular Biology book series (MIMB, volume 1561) | Cite as

Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models

Protocol

Abstract

Computationally designed peptides targeting protein-protein interaction interfaces are of great interest as reagents for biological research and potential therapeutics. In recent years, it has been shown that detailed structure-based calculations can, in favorable cases, describe relevant determinants of protein-peptide recognition. Yet, despite large increases in available computing power, such accurate modeling of the binding reaction is still largely outside the realm of protein design. The chief limitation is in the large sequence spaces generally involved in protein design problems, such that it is typically infeasible to apply expensive modeling techniques to score each sequence. Toward addressing this issue, we have previously shown that by explicitly evaluating the scores of a relatively small number of sequences, it is possible to synthesize a direct mapping between sequences and scores, such that the entire sequence space can be analyzed extremely rapidly. The associated method, called Cluster Expansion, has been used in a number of studies to design binding affinity and specificity. In this chapter, we provide instructions and guidance for applying this technique in the context of designing protein-peptide interactions to enable the use of more detailed and expensive scoring approaches than is typically possible.

Key words

Interaction specificity Computational protein design PDZ-peptide interactions Cluster expansion Flexible peptide docking 

References

  1. 1.
    Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):2090–2099CrossRefGoogle Scholar
  2. 2.
    Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452CrossRefPubMedGoogle Scholar
  3. 3.
    Kuriyan J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 26:259–288CrossRefPubMedGoogle Scholar
  4. 4.
    Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J (2011) Computational design of peptide ligands. Trends Biotechnol 29(5):231–239CrossRefPubMedGoogle Scholar
  5. 5.
    Chen JR, Chang BH, Allen JE, Stiffler MA, MacBeath G (2008) Predicting PDZ domain-peptide interactions from primary sequences. Nat Biotechnol 26(9):1041–1045CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kamisetty H, Ghosh B, Langmead CJ, Bailey-Kellogg C (2014) Learning sequence determinants of protein:protein interaction specificity with sparse graphical models. Res Comput Mol Biol 8394:129–143PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gan W, Roux B (2009) Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74(4):996–1007CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402(2):460–474CrossRefPubMedGoogle Scholar
  9. 9.
    King CA, Bradley P (2010) Structure-based prediction of protein-peptide specificity in Rosetta. Proteins 78(16):3437–3449CrossRefPubMedGoogle Scholar
  10. 10.
    London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O (2011) Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol 7(10):e1002170CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    London N, Gulla S, Keating AE, Schueler-Furman O (2012) In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. Biochemistry 51(29):5841–5850CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yanover C, Bradley P (2011) Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci U S A 108(17):6981–6986CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 8(4):e1002477CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    DeBartolo J, Dutta S, Reich L, Keating AE (2012) Predictive Bcl-2 family binding models rooted in experiment or structure. J Mol Biol 422(1):124–144CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    DeBartolo J, Taipale M, Keating AE (2014) Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. PLoS Comput Biol 10(6):e1003693CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grigoryan G, Zhou F, Lustig SR, Ceder G, Morgan D, Keating AE (2006) Ultra-fast evaluation of protein energies directly from sequence. PLoS Comput Biol 2(6):551–563CrossRefGoogle Scholar
  17. 17.
    Zhou F, Grigoryan G, Lustig SR, Keating AE, Ceder G, Morgan D (2005) Coarse-graining protein energetics in sequence variables. Phys Rev Lett 95(14):148103CrossRefPubMedGoogle Scholar
  18. 18.
    Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458(7240):859–U852CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zheng F, Jewell H, Fitzpatrick J, Zhang J, Mierke DF, Grigoryan G (2015) Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway. J Mol Biol 427(2):491–510CrossRefPubMedGoogle Scholar
  20. 20.
    Negron C, Keating AE (2014) A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 136(47):16544–16556CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Negron C, Keating AE (2013) Multistate protein design using CLEVER and CLASSY. Methods Enzymol 523:171–190CrossRefPubMedGoogle Scholar
  22. 22.
    Hahn S, Ashenberg O, Grigoryan G, Keating AE (2010) Identifying and reducing error in cluster-expansion approximations of protein energies. J Comput Chem 31(16):2900–2914PubMedGoogle Scholar
  23. 23.
    Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YEA, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6(4):e18934CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zheng F, Grigoryan G (2016) Design of specific peptide-protein recognition. Methods Mol Biol 1414:249–263CrossRefPubMedGoogle Scholar
  26. 26.
    Tonikian R, Zhang YN, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin XF, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6(9):2043–2059CrossRefGoogle Scholar
  27. 27.
    Kingsford CL, Chazelle B, Singh M (2005) Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21(7):1028–1036CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of Computer ScienceDartmouth CollegeHanoverUSA
  3. 3.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations