Inflammation pp 367-375 | Cite as

Quantitative Assessment of Cerebral Basement Membranes Using Electron Microscopy

  • Matthew MacGregor SharpEmail author
  • Anton Page
  • Alan Morris
  • Roy O. Weller
  • Roxana O. Carare
Part of the Methods in Molecular Biology book series (MIMB, volume 1559)


In this chapter we describe in detail the tissue processing techniques we employ for the study of cerebral tissue by transmission electron microscopy (TEM). In particular, we explain a technique that enables quantification of changes in cerebral basement membranes at the ultrastructural level. This is significant, as age related pathological conditions affecting the brain are often accompanied by ultrastructural changes in the cerebral vasculature.

Briefly, experimental mice are fixed by perfusion and their brains removed. Brains are then vibratomed into 100 μm slices with regions of interest microdissected and processed for TEM following a protocol optimized for the preservation of cerebral tissue. Changes in the thickness of cerebral basement membranes are then quantified using novel software. Some prior knowledge of general TEM specimen preparation and sectioning will be useful when performing this protocol.

Key words

Transmission electron microscopy Basement membrane Tissue processing Microtomy Ultra-thin sectioning Fixation Dehydration Resin embedding Electron micrograph 


  1. 1.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, Weller RO, Carare RO (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131(5):725–736CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144CrossRefPubMedGoogle Scholar
  4. 4.
    Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18(2):123–132CrossRefPubMedGoogle Scholar
  5. 5.
    Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8(5):618–624CrossRefPubMedGoogle Scholar
  6. 6.
    Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4(6):1577–1590PubMedGoogle Scholar
  7. 7.
    Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611CrossRefPubMedGoogle Scholar
  8. 8.
    LeBleu VS, Macdonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med (Maywood) 232(9):1121–1129CrossRefGoogle Scholar
  9. 9.
    Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121(4):431–443CrossRefPubMedGoogle Scholar
  10. 10.
    Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of transforming growth factor-β1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol 156(1):139–150CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kalaria RN, Pax AB (1995) Increased collagen content of cerebral microvessels in Alzheimer’s disease. Brain Res 705(1–2):349–352CrossRefPubMedGoogle Scholar
  12. 12.
    Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging Cell 12(2):224–236CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Matthew MacGregor Sharp
    • 1
    Email author
  • Anton Page
    • 2
  • Alan Morris
    • 1
  • Roy O. Weller
    • 1
  • Roxana O. Carare
    • 1
  1. 1.Clinical Neurosciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Biomedical Imaging UnitUniversity of SouthamptonSouthamptonUK

Personalised recommendations