Advertisement

Inflammation pp 343-365 | Cite as

Investigating the Lymphatic Drainage of the Brain: Essential Skills and Tools

  • Nazira J. Albargothy
  • Matthew MacGregor Sharp
  • Maureen Gatherer
  • Alan Morris
  • Roy O. Weller
  • Cheryl Hawkes
  • Roxana O. CarareEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1559)

Abstract

In this chapter we describe in detail the surgical and imaging techniques employed for the study of the anatomical routes of drainage of cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the brain. The types of tracers, sites of injection, and volumes injected are crucial. For example, when testing the drainage of ISF from the parenchyma, volumes larger than 0.5 μL result in spillage of ISF into the ventricular CSF.

Key words

Mouse brain Perivascular lymphatic drainage Alzheimer’s disease Interstitial fluid Cerebrospinal fluid Solute clearance Rodent perfusion Intraparenchymal stereotactic injections Cisterna magna injections 

References

  1. 1.
    Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19(6):480–488CrossRefPubMedGoogle Scholar
  2. 2.
    Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144CrossRefPubMedGoogle Scholar
  3. 3.
    Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45(1):50–60CrossRefPubMedGoogle Scholar
  4. 4.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, Weller RO, Carare RO (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131(5):725–736CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zekonyte J, Sakai K, Nicoll JA, Weller RO, Carare RO (2016) Quantification of molecular interactions between ApoE, amyloid-beta (Abeta) and laminin: relevance to accumulation of Abeta in Alzheimer’s disease. Biochim Biophys Acta 1862(5):1047–1053CrossRefPubMedGoogle Scholar
  7. 7.
    Weller RO, Hawkes CA, Carare RO (2016) Lymphatic drainage of the brain and CSF: relevance to neuroimmunology and Alzheimer’s disease. Neurol Psychiatry Brain Res 22(1):24CrossRefGoogle Scholar
  8. 8.
    Weller RO, Carare RO, Hawkes CA, Galea I (2016) Chapter 19—Pathophysiology of lymphatic drainage of the central nervous system: implications for the pathophysiology of multiple sclerosis. In: Minagar A (ed) Multiple sclerosis. Academic, San Diego, pp 479–501CrossRefGoogle Scholar
  9. 9.
    Nizari S, Carare RO, Hawkes CA (2016) Increased Abeta pathology in aged Tg2576 mice born to mothers fed a high fat diet. Sci Rep 6:21981CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Keable A, Fenna K, Yuen HM, Johnston DA, Smyth NR, Smith C, Al-Shahi Salman R, Samarasekera N, Nicoll JA, Attems J, Kalaria RN, Weller RO, Carare RO (2016) Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta 1862(5):1037–1046CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36(2):181–194CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weller RO, Hawkes CA, Kalaria RN, Werring DJ, Carare RO (2015) White matter changes in dementia: role of impaired drainage of interstitial fluid. Brain Pathol 25(1):63–78CrossRefPubMedGoogle Scholar
  13. 13.
    Weller RO, Hawkes CA, Carare RO, Hardy J (2015) Does the difference between PART and Alzheimer’s disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Abeta and propagation of tau? Acta Neuropathol 129(5):763–766CrossRefPubMedGoogle Scholar
  14. 14.
    Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Menard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hawkes CA, Gentleman SM, Nicoll JA, Carare RO (2015) Prenatal high-fat diet alters the cerebrovasculature and clearance of beta-amyloid in adult offspring. J Pathol 235(4):619–631CrossRefPubMedGoogle Scholar
  16. 16.
    Morris AW, Carare RO, Schreiber S, Hawkes CA (2014) The cerebrovascular basement membrane: role in the clearance of beta-amyloid and cerebral amyloid angiopathy. Front Aging Neurosci 6:251CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO (2014) Failure of perivascular drainage of beta-amyloid in cerebral amyloid angiopathy. Brain Pathol 24(4):396–403CrossRefPubMedGoogle Scholar
  18. 18.
    Bueche CZ, Hawkes C, Garz C, Vielhaber S, Attems J, Knight RT, Reymann K, Heinze HJ, Carare RO, Schreiber S (2014) Hypertension drives parenchymal beta-amyloid accumulation in the brain parenchyma. Ann Clin Transl Neurol 1(2):124–129CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging Cell 12(2):224–236CrossRefPubMedGoogle Scholar
  20. 20.
    Carare RO, Teeling JL, Hawkes CA, Puntener U, Weller RO, Nicoll JA, Perry VH (2013) Immune complex formation impairs the elimination of solutes from the brain: implications for immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun 1:48CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Weller RO, Galea I, Carare RO, Minagar A (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17(4):295–306CrossRefPubMedGoogle Scholar
  22. 22.
    Laman JD, Weller RO (2013) Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 8(4):840–856CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Nazira J. Albargothy
    • 1
  • Matthew MacGregor Sharp
    • 1
  • Maureen Gatherer
    • 1
  • Alan Morris
    • 1
  • Roy O. Weller
    • 1
  • Cheryl Hawkes
    • 2
  • Roxana O. Carare
    • 1
    Email author
  1. 1.Clinical Neurosciences, Faculty of MedicineUniversity of Southampton, Southampton General HospitalSouthamptonUK
  2. 2.Department of Life, Health and Chemical SciencesOpen UniversityMilton KeynesUK

Personalised recommendations