Protein Identification from Tandem Mass Spectra by Database Searching

  • Nathan J. Edwards
Part of the Methods in Molecular Biology book series (MIMB, volume 1558)


Protein identification from tandem mass spectra is one of the most versatile and widely used proteomics workflows, able to identify proteins, characterize post-translational modifications, and provide semiquantitative measurements of relative protein abundance. This manuscript describes the concepts, prerequisites, and methods required to analyze a tandem mass spectrometry dataset in order to identify its proteins, by using a tandem mass spectrometry search engine to search protein sequence databases. The discussion includes instructions for extraction, preparation, and formatting of spectral datafiles, selection of appropriate search parameter settings, and basic interpretation of the results.

Key words

Protein identification MS/MS spectra Protein sequence databases Peptide identification Search engine 


  1. 1.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207CrossRefPubMedGoogle Scholar
  2. 2.
    McDonald WH, Yates JR (2003) Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther 5(3):302–309PubMedGoogle Scholar
  3. 3.
    Sadygov RG, Cociorva D, Yates JR (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 1(3):195–202CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson R, Davis M, Taylor J et al (2005) Informatics for protein identification by mass spectrometry. Methods 35(3):223–236CrossRefPubMedGoogle Scholar
  5. 5.
    Maccoss M (2005) Computational analysis of shotgun proteomics data. Curr Opin Chem Biol 9(1):88–94CrossRefPubMedGoogle Scholar
  6. 6.
    Nesvizhskii AI (2007) Mass spectrometry data analysis in proteomics, Methods in Molecular Biology, vol 367, Humana Press, chap Protein Identification by Tandem Mass Spectrometry and Sequence Database Searching, pp 87–119Google Scholar
  7. 7.
    Deutsch EW, Lam H, Aebersold R (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33(1):18–25CrossRefPubMedGoogle Scholar
  8. 8.
    Taylor A, Johnson RS (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 11:1067–1075CrossRefPubMedGoogle Scholar
  9. 9.
    Chen T, Kao MY, Tepel M et al (2001) A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol 8(3):325–337CrossRefPubMedGoogle Scholar
  10. 10.
    Bafna V, Edwards N (2003) On de novo interpretation of tandem mass spectra for peptide identification. In: RECOMB ‘03: Proceedings of the seventh annual international conference on research in computational molecular biology. ACM Press, pp 9–18Google Scholar
  11. 11.
    Frank A, Pevzner P (2005) Pepnovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973CrossRefPubMedGoogle Scholar
  12. 12.
    Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66(24):4390–4399CrossRefPubMedGoogle Scholar
  13. 13.
    Tanner S, Shu H, Frank A et al (2005) Inspect: identification of post translationally modified peptides from tandem mass spectra. Anal Chem 77(14):4626–4639CrossRefPubMedGoogle Scholar
  14. 14.
    Tabb DL, Ma ZQ, Martin DB et al (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7(9):3838–3846CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dass C (2001) Principles and Practice of Biological Mass Spectrometry. John Wiley & Sons Inc.Google Scholar
  16. 16.
    Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567CrossRefPubMedGoogle Scholar
  17. 17.
    Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989CrossRefPubMedGoogle Scholar
  18. 18.
    Craig R, Beavis RC (2004) Tandem: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467CrossRefPubMedGoogle Scholar
  19. 19.
    Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Edwards NJ (2013) PepArML: a meta-search peptide identification platform for tandem mass spectra. Curr Protoc Bioinformatics 44(13):23.1–2323Google Scholar
  21. 21.
    Slagel J, Mendoza L, Shteynberg D et al (2015) Processing shotgun proteomics data on the amazon cloud with the Trans-Proteomic pipeline. Mol Cell Proteomics 14(2):399–404CrossRefPubMedGoogle Scholar
  22. 22.
    The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38(Database Issue):D142–D148CrossRefGoogle Scholar
  23. 23.
    Edwards NJ (2007) Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Mol Syst Biol 3(102)Google Scholar
  24. 24.
    Keller A, Eng J, Zhang N et al (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1(17)Google Scholar
  25. 25.
    Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Edwards N, Wu X, Tseng CW (2009) An unsupervised, model-free, machine-learning combiner for peptide identifications from tandem mass spectra. Clin Proc 5(1)Google Scholar
  27. 27.
    MacLean B, Eng JK, Beavis RC et al (2006) General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22(22):2830–2832CrossRefPubMedGoogle Scholar
  28. 28.
    Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964CrossRefPubMedGoogle Scholar
  29. 29.
    Tabb DL, Fernando CG, Chambers MC (2007) Myrimatch: Highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6(2):654–661CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reiter L, Claassen M, Schrimpf SP et al (2009) Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 8(11):2405–2417CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Frese CK, Altelaar AFM, Hennrich ML et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-orbitrap velos. J Proteome Res 10(5):2377–2388CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashington, DCUSA

Personalised recommendations