CD95 pp 173-188 | Cite as

Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE

  • Krittalak Chakrabandhu
  • Sébastien Huault
  • Anne-Odile HueberEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1557)


Phosphorylation of two tyrosines in the death domain of CD95 is a critical mechanism in determining the receptor’s choices between cell death and survival signals. Recently, site-specific monoclonal antibodies against phosphorylated tyrosines of CD95 have been generated and used to successfully detect each phosphorylated death domain tyrosine of CD95 directly and separately by immunoblotting. Here we provide detailed protocols and useful tips for a successful site-specific detection of phosphorylated death domain tyrosine of CD95 following a protein separation by sizes (conventional SDS-PAGE) and by degrees of phosphorylation (phospho-protein affinity, mobility shift SDS-PAGE).

Key words

SDS-PAGE Immunoblot Phos-tag™ Phosphorylation CD95 Mobility shift 


  1. 1.
    Chakrabandhu K et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220CrossRefPubMedGoogle Scholar
  2. 2.
    Chakrabandhu K et al (2016) An evolution-guided analysis reveals a multi-signaling regulation of Fas by tyrosine phosphorylation and its implication in human cancers. PLoS Biol 14(3):e1002401CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gradl G et al (1996) The CD95 (Fas/APO-1) receptor is phosphorylated in vitro and in vivo and constitutively associates with several cellular proteins. Apoptosis 1:131–140CrossRefGoogle Scholar
  4. 4.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4(10):1513–1521CrossRefPubMedGoogle Scholar
  5. 5.
    Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482CrossRefPubMedGoogle Scholar
  6. 6.
    Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268CrossRefPubMedGoogle Scholar
  7. 7.
    Strand S et al (2004) Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene 23(20):3732–3736CrossRefPubMedGoogle Scholar
  8. 8.
    Lajmanovich A et al (2009) Identification, characterisation and regulation by CD40 activation of novel CD95 splice variants in CD95-apoptosis-resistant, human, B-cell non-Hodgkin’s lymphoma. Exp Cell Res 315(19):3281–3293CrossRefPubMedGoogle Scholar
  9. 9.
    Owen-Schaub L (2001) Soluble Fas and cancer. Clin Cancer Res 7(5):1108–1109PubMedGoogle Scholar
  10. 10.
    Leon-Bollotte L et al (2011) S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 140(7):2009–2018, 2018.e2001–2004CrossRefPubMedGoogle Scholar
  11. 11.
    Anathy V et al (2009) Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. J Cell Biol 184(2):241–252CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Feig C, Tchikov V, Schütze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231CrossRefPubMedGoogle Scholar
  13. 13.
    Kamitani T, Nguyen HP, Yeh ET (1997) Activation-induced aggregation and processing of the human Fas antigen. Detection with cytoplasmic domain-specific antibodies. J Biol Chem 272(35):22307–22314CrossRefPubMedGoogle Scholar
  14. 14.
    Watanabe-Fukunaga R et al (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148(4):1274–1279PubMedGoogle Scholar
  15. 15.
    Itoh N et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243CrossRefPubMedGoogle Scholar
  16. 16.
    Oehm A et al (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 267(15):10709–10715PubMedGoogle Scholar
  17. 17.
    Shatnyeva OM et al (2011) Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation. PLoS One 6(5):e19927CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keppler OT et al (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9(6):557–569CrossRefPubMedGoogle Scholar
  19. 19.
    García-Fuster MJ et al (2007) Effects of constitutive deletion of opioid receptors on the basal densities of Fas and Fas-associated protein with death domain (FADD) in the mouse brain: a delta-opioid tone inhibits FADD. Eur Neuropsychopharmacol 17(5):366–374CrossRefPubMedGoogle Scholar
  20. 20.
    Chen L et al (2010) CD95 promotes tumour growth. Nature 465(7297):492–496CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Peter ME (2014) DICE: a novel tumor surveillance mechanism-a new therapy for cancer? Cell Cycle 13(9):1373–1378CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Krittalak Chakrabandhu
    • 1
  • Sébastien Huault
    • 1
  • Anne-Odile Hueber
    • 2
    Email author
  1. 1.Université Côte d’Azur, Institut de Biologie Valrose, CNRS UMR 7277, Inserm UMR 1091Parc Valrose, Bâtiment des Sciences NaturellesNiceFrance
  2. 2.Institut de Biologie Valrose, CNRS UMR 7277, INSERM UMR,Université de NiceNiceFrance

Personalised recommendations