Skip to main content

Predicting Alpha Helical Transmembrane Proteins Using HMMs

Part of the Methods in Molecular Biology book series (MIMB,volume 1552)

Abstract

Alpha helical transmembrane (TM) proteins constitute an important structural class of membrane proteins involved in a wide variety of cellular functions. The prediction of their transmembrane topology, as well as their discrimination in newly sequenced genomes, is of great importance for the elucidation of their structure and function. Several methods have been applied for the prediction of the transmembrane segments and the topology of alpha helical transmembrane proteins utilizing different algorithmic techniques. Hidden Markov Models (HMMs) have been efficiently used in the development of several computational methods used for this task. In this chapter we give a brief review of different available prediction methods for alpha helical transmembrane proteins pointing out sequence and structural features that should be incorporated in a prediction method. We then describe the procedure of the design and development of a Hidden Markov Model capable of predicting the transmembrane alpha helices in proteins and discriminating them from globular proteins.

Key words

  • Hidden Markov model
  • Algorithms
  • Prediction
  • Membrane
  • Transmembrane
  • Alpha helical
  • Protein

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6753-7_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6753-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    CAS  PubMed  CrossRef  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242, doi:gkd090 [pii]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Punta M, Forrest LR, Bigelow H et al (2007) Membrane protein prediction methods. Methods 41(4):460–474. doi:10.1016/j.ymeth.2006.07.026

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  4. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132, doi:0022-2836(82)90515-0 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  5. Claros MG, von Heijne G (1994) TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10(6):685–686

    CAS  PubMed  Google Scholar 

  6. Sipos L, von Heijne G (1993) Predicting the topology of eukaryotic membrane proteins. Eur J Biochem 213(3):1333–1340

    CAS  PubMed  CrossRef  Google Scholar 

  7. Pasquier C, Promponas VJ, Palaios GA et al (1999) A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng Des Sel 12(5):381–385

    CAS  CrossRef  Google Scholar 

  8. Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33(10):3038–3049

    CAS  PubMed  CrossRef  Google Scholar 

  9. Rost B, Casadio R, Fariselli P et al (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci 4(3):521–533

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Pasquier C, Hamodrakas SJ (1999) An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng Des Sel 12(8):631–634

    CAS  CrossRef  Google Scholar 

  11. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  12. Bagos PG, Liakopoulos TD, Hamodrakas SJ (2006) Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins. BMC Bioinformatics 7:189. doi:10.1186/1471-2105-7-189

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  13. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. doi:10.1016/j.jmb.2004.03.016

    CAS  PubMed  CrossRef  Google Scholar 

  14. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850

    CAS  PubMed  CrossRef  Google Scholar 

  15. Viklund H, Elofsson A (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13(7):1908–1917. doi:10.1110/ps.04625404

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159. doi:10.1186/1471-2105-10-159

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  17. Reynolds SM, Kall L, Riffle ME et al (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput Biol 4(11):e1000213. doi:10.1371/journal.pcbi.1000213

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  18. Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15):1662–1668. doi:10.1093/bioinformatics/btn221

    CAS  PubMed  CrossRef  Google Scholar 

  19. Viklund H, Bernsel A, Skwark M et al (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24(24):2928–2929. doi:10.1093/bioinformatics/btn550

    CAS  PubMed  CrossRef  Google Scholar 

  20. Promponas VJ, Palaios GA, Pasquier CM et al (1999) CoPreTHi: a Web tool which combines transmembrane protein segment prediction methods. In Silico Biol 1(3):159–162, doi:1998010014 [pii]

    CAS  PubMed  Google Scholar 

  21. Nilsson J, Persson B, Von Heijne G (2002) Prediction of partial membrane protein topologies using a consensus approach. Protein Sci 11(12):2974–2980. doi:10.1110/ps.0226702

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Bernsel A, Viklund H, Hennerdal A et al (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37(Web Server issue):W465–W468. doi:10.1093/nar/gkp363

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Klammer M, Messina DN, Schmitt T et al (2009) MetaTM—a consensus method for transmembrane protein topology prediction. BMC Bioinformatics 10:314. doi:10.1186/1471-2105-10-314

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  24. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653

    CAS  PubMed  CrossRef  Google Scholar 

  25. Bagos PG, Liakopoulos TD, Hamodrakas SJ (2005) Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics 6:7. doi:10.1186/1471-2105-6-7

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  26. Kozma D, Simon I, Tusnady GE (2013) PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41(Database issue):D524–D529. doi:10.1093/nar/gks1169

    CAS  PubMed  CrossRef  Google Scholar 

  27. Delano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

  28. Almen MS, Nordstrom KJ, Fredriksson R et al (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50. doi:10.1186/1741-7007-7-50

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  29. Bowie JU (1997) Helix packing angle preferences. Nat Struct Biol 4(11):915–917

    CAS  PubMed  CrossRef  Google Scholar 

  30. Chen H, Kendall DA (1995) Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation. J Biol Chem 270(23):14115–14122

    CAS  PubMed  CrossRef  Google Scholar 

  31. Nilsson I, von Heijne G (1998) Breaking the camel’s back: proline-induced turns in a model transmembrane helix. J Mol Biol 284(4):1185–1189. doi:10.1006/jmbi.1998.2219

    CAS  PubMed  CrossRef  Google Scholar 

  32. Wallin E, Tsukihara T, Yoshikawa S et al (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci 6(4):808–815. doi:10.1002/pro.5560060407

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Weiss MS, Kreusch A, Schiltz E et al (1991) The structure of porin from Rhodobacter capsulatus at 1.8 A resolution. FEBS Lett 280(2):379–382, doi:0014-5793(91)80336-2 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  34. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225(2):487–494

    CrossRef  Google Scholar 

  35. Nilsson J, Persson B, von Heijne G (2005) Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60(4):606–616. doi:10.1002/prot.20583

    CAS  PubMed  CrossRef  Google Scholar 

  36. Gafvelin G, Sakaguchi M, Andersson H et al (1997) Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272(10):6119–6127

    CAS  PubMed  CrossRef  Google Scholar 

  37. Andersson H, von Heijne G (1993) Sec dependent and sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. EMBO J 12(2):683–691

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bogdanov M, Xie J, Dowhan W (2009) Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 284(15):9637–9641. doi:10.1074/jbc.R800081200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. van Klompenburg W, Nilsson I, von Heijne G et al (1997) Anionic phospholipids are determinants of membrane protein topology. EMBO J 16(14):4261–4266

    PubMed  PubMed Central  CrossRef  Google Scholar 

  40. von Heijne G (1991) Proline kinks in transmembrane alpha-helices. J Mol Biol 218(3):499–503, doi:0022-2836(91)90695-3 [pii]

    CrossRef  Google Scholar 

  41. Sansom MS (1992) Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng 5(1):53–60

    CAS  PubMed  CrossRef  Google Scholar 

  42. Park SH, Opella SJ (2005) Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J Mol Biol 350(2):310–318. doi:10.1016/j.jmb.2005.05.004

    CAS  PubMed  CrossRef  Google Scholar 

  43. Yeagle PL, Bennett M, Lemaitre V et al (2007) Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Biochim Biophys Acta 1768(3):530–537. doi:10.1016/j.bbamem.2006.11.018

    CAS  PubMed  CrossRef  Google Scholar 

  44. Granseth E, von Heijne G, Elofsson A (2005) A study of the membrane-water interface region of membrane proteins. J Mol Biol 346(1):377–385. doi:10.1016/j.jmb.2004.11.036

    CAS  PubMed  CrossRef  Google Scholar 

  45. Liang J, Adamian L, Jackups R Jr (2005) The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect. Trends Biochem Sci 30(7):355–357. doi:10.1016/j.tibs.2005.05.003

    CAS  PubMed  CrossRef  Google Scholar 

  46. Viklund H, Granseth E, Elofsson A (2006) Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. J Mol Biol 361(3):591–603. doi:10.1016/j.jmb.2006.06.037

    CAS  PubMed  CrossRef  Google Scholar 

  47. Yan C, Luo J (2010) An analysis of reentrant loops. Protein J 29(5):350–354. doi:10.1007/s10930-010-9259-z

    CAS  PubMed  CrossRef  Google Scholar 

  48. Van den Berg B, Clemons WM Jr, Collinson I et al (2004) X-ray structure of a protein-conducting channel. Nature 427(6969):36–44. doi:10.1038/nature02218

    PubMed  CrossRef  CAS  Google Scholar 

  49. Dutzler R, Campbell EB, Cadene M et al (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415(6869):287–294. doi:10.1038/415287a

    CAS  PubMed  CrossRef  Google Scholar 

  50. Zhou Y, Morais-Cabral JH, Kaufman A et al (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414(6859):43–48. doi:10.1038/35102009

    CAS  PubMed  CrossRef  Google Scholar 

  51. Mitsuoka K, Murata K, Walz T et al (1999) The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer. J Struct Biol 128(1):34–43. doi:10.1006/jsbi.1999.4177

    CAS  PubMed  CrossRef  Google Scholar 

  52. Rapp M, Granseth E, Seppala S et al (2006) Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13(2):112–116. doi:10.1038/nsmb1057

    CAS  PubMed  CrossRef  Google Scholar 

  53. Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    CAS  PubMed  CrossRef  Google Scholar 

  54. Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283(2):489–506. doi:10.1006/jmbi.1998.2107

    CAS  PubMed  CrossRef  Google Scholar 

  55. Kall L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1):i251–i257. doi:10.1093/bioinformatics/bti1014

    PubMed  CrossRef  Google Scholar 

  56. Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. doi:10.1038/nmeth.1701

    CAS  PubMed  CrossRef  Google Scholar 

  57. Tsirigos KD, Peters C, Shu N et al (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43(W1):W401–W407. doi:10.1093/nar/gkv485

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Bernsel A, Viklund H, Falk J et al (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105(20):7177–7181. doi:10.1073/pnas.0711151105

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Peters C, Tsirigos KD, Shu N et al (2015) Improved topology prediction using the terminal hydrophobic helices rule. Bioinformatics 32:1158–1162. doi:10.1093/bioinformatics/btv709

    PubMed  CrossRef  CAS  Google Scholar 

  60. Hessa T, Meindl-Beinker NM, Bernsel A et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450(7172):1026–1030. doi:10.1038/nature06387

    CAS  PubMed  CrossRef  Google Scholar 

  61. Granseth E, Viklund H, Elofsson A (2006) ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins. Bioinformatics 22(14):e191–e196. doi:10.1093/bioinformatics/btl206

    CAS  PubMed  CrossRef  Google Scholar 

  62. van Geest M, Lolkema JS (2000) Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 64(1):13–33

    PubMed  PubMed Central  CrossRef  Google Scholar 

  63. Bernsel A, Von Heijne G (2005) Improved membrane protein topology prediction by domain assignments. Protein Sci 14(7):1723–1728. doi:10.1110/ps.051395305

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Letunic I, Copley RR, Pils B et al (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34(Database issue):D257–D260. doi:10.1093/nar/gkj079

    CAS  PubMed  CrossRef  Google Scholar 

  65. Mulder NJ, Apweiler R, Attwood TK et al (2007) New developments in the InterPro database. Nucleic Acids Res 35(Database issue):D224–D228. doi:10.1093/nar/gkl841

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288. doi:10.1093/nar/gkm960

    CAS  PubMed  Google Scholar 

  67. Tusnady GE, Kalmar L, Hegyi H et al (2008) TOPDOM: database of domains and motifs with conservative location in transmembrane proteins. Bioinformatics 24(12):1469–1470. doi:10.1093/bioinformatics/btn202

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  68. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    CrossRef  Google Scholar 

  69. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763, doi:btb114 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  70. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130

    CAS  PubMed  Google Scholar 

  71. Krogh A (1994) Hidden Markov models for labelled sequences. In: Proceedings of the12th IAPR international conference on pattern recognition, pp 140–144

    Google Scholar 

  72. Martelli PL, Fariselli P, Krogh A et al (2002) A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 18(Suppl 1):S46–S53

    PubMed  CrossRef  Google Scholar 

  73. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90. doi:10.1038/srep00090

    CAS  PubMed Central  CrossRef  Google Scholar 

  74. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8, doi:S0304-4165(99)00165-8 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  75. Welply JK, Shenbagamurthi P, Lennarz WJ et al (1983) Substrate recognition by oligosaccharyltransferase. Studies on glycosylation of modified Asn-X-Thr/Ser tripeptides. J Biol Chem 258(19):11856–11863

    CAS  PubMed  Google Scholar 

  76. Nilsson IM, von Heijne G (1993) Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268(8):5798–5801

    CAS  PubMed  Google Scholar 

  77. Popov M, Li J, Reithmeier RA (1999) Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis. Biochem J 339(Pt 2):269–279

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Popov M, Tam LY, Li J et al (1997) Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem 272(29):18325–18332

    CAS  PubMed  CrossRef  Google Scholar 

  79. Landolt-Marticorena C, Reithmeier RA (1994) Asparagine-linked oligosaccharides are localized to single extracytosolic segments in multi-span membrane glycoproteins. Biochem J 302(Pt 1):253–260

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30(6):286–290. doi:10.1016/j.tibs.2005.04.013

    CAS  PubMed  CrossRef  Google Scholar 

  81. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146. doi:10.1016/j.ceb.2009.01.028

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  82. Wood CD, Thornton TM, Sabio G et al (2009) Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci 5(5):428–437

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  83. Zhang J, Johnson GV (2000) Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells. J Neurochem 75(6):2346–2357

    CAS  PubMed  CrossRef  Google Scholar 

  84. Kalume DE, Molina H, Pandey A (2003) Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol 7(1):64–69, doi:S1367593102000091 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  85. Tsaousis GN, Bagos PG, Hamodrakas SJ (2014) HMMpTM: Improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. Biochim Biophys Acta 1844(2):316–322. doi:10.1016/j.bbapap.2013.11.001

    CAS  PubMed  CrossRef  Google Scholar 

  86. Wistrand M, Käll L, Sonnhammer EL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15(3):509–521. doi:10.1110/ps.051745906

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  87. Theodoropoulou MC, Tsaousis GN, Litou ZI et al (2013) GPCRpipe: a pipeline for the detection of G-protein coupled receptors in proteomes. In: Joint 21st annual international conference on Intelligent Systems for Molecular Biology (ISMB) and 12th European Conference on Computational Biology (ECCB), 2013

    Google Scholar 

  88. Lomize MA, Lomize AL, Pogozheva ID et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22(5):623–625. doi:10.1093/bioinformatics/btk023

    CAS  PubMed  CrossRef  Google Scholar 

  89. Dobson L, Lango T, Remenyi I et al (2015) Expediting topology data gathering for the TOPDB database. Nucleic Acids Res 43(Database issue):D283–D289. doi:10.1093/nar/gku1119

    PubMed  CrossRef  Google Scholar 

  90. Tsaousis GN, Tsirigos KD, Andrianou XD et al (2010) ExTopoDB: a database of experimentally derived topological models of transmembrane proteins. Bioinformatics 26(19):2490–2492. doi:10.1093/bioinformatics/btq362

    CAS  PubMed  CrossRef  Google Scholar 

  91. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402, doi:gka562 [pii]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  92. Bagos PG, Tsaousis GN, Hamodrakas SJ (2009) How many 3D structures do we need to train a predictor? Genomics Proteomics Bioinformatics 7(3):128–137. doi:10.1016/S1672-0229(08)60041-8

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Zemla A, Venclovas C, Fidelis K et al (1999) A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34(2):220–223. doi:10.1002/(SICI)1097-0134(19990201)34:2

    CAS  PubMed  CrossRef  Google Scholar 

  94. Baldi P, Brunak S, Chauvin Y et al (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5):412–424

    CAS  PubMed  CrossRef  Google Scholar 

  95. Baum LE (1972) An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1–8

    Google Scholar 

  96. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B Methodol 39(1):1–38. doi:10.2307/2984875

    Google Scholar 

  97. Krogh A (1997) Two methods for improving performance of an HMM and their application for gene finding. Proc Int Conf Intell Syst Mol Biol 5:179–186

    CAS  PubMed  Google Scholar 

  98. Bagos P, Liakopoulos T, Hamodrakas S (2004) Faster gradient descent training of hidden Markov models, using individual learning rate adaptation. In: Paliouras G, Sakakibara Y (eds) Grammatical inference: algorithms and applications, vol 3264, Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 40–52. doi:10.1007/978-3-540-30195-0_5

    CrossRef  Google Scholar 

  99. Krogh A, Riis SK (1999) Hidden neural networks. Neural Comput 11(2):541–563

    CAS  PubMed  CrossRef  Google Scholar 

  100. Schwartz R, Chow YL (1990) The N-best algorithms: an efficient and exact procedure for finding the N most likely sentence hypotheses. In: 1990 international conference on acoustics, speech, and signal processing, 1990. ICASSP-90, 3–6 Apr 1990, vol 81, pp 81–84. doi:10.1109/icassp.1990.115542

  101. Jacoboni I, Martelli PL, Fariselli P et al (2001) Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci 10(4):779–787. doi:10.1110/ps.37201

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  102. Fariselli P, Finelli M, Marchignoli D et al (2003) MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments. Bioinformatics 19(4):500–505

    CAS  PubMed  CrossRef  Google Scholar 

  103. Fariselli P, Martelli PL, Casadio R (2005) A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins. BMC Bioinformatics 6(Suppl 4):S12

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  104. Virkki MT, Peters C, Nilsson D et al (2014) The positive inside rule is stronger when followed by a transmembrane helix. J Mol Biol 426(16):2982–2991. doi:10.1016/j.jmb.2014.06.002

    CAS  PubMed  CrossRef  Google Scholar 

  105. Wang H, Zhang C, Shi X et al (2012) Improving transmembrane protein consensus topology prediction using inter-helical interaction. Biochim Biophys Acta 1818(11):2679–2686. doi:10.1016/j.bbamem.2012.05.030

    CAS  PubMed  CrossRef  Google Scholar 

  106. Nugent T, Ward S, Jones DT (2011) The MEMPACK alpha-helical transmembrane protein structure prediction server. Bioinformatics 27(10):1438–1439. doi:10.1093/bioinformatics/btr096

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis G. Bagos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tsaousis, G.N., Theodoropoulou, M.C., Hamodrakas, S.J., Bagos, P.G. (2017). Predicting Alpha Helical Transmembrane Proteins Using HMMs. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols