Skip to main content

Tools for Designing Amphipathic Helical Antimicrobial Peptides

Part of the Methods in Molecular Biology book series (MIMB,volume 1548)

Abstract

Methods are described for the design of amphipathic helical AMPs, to improve potency and/or increase selectivity with respect to host cells. One method is based on the statistical analysis of known helical AMPs to derive a sequence template and ranges of charge, hydrophobicity, and amphipathicity (hydrophobic moment) values that lead to broad-spectrum activity, but leaves optimization for selectivity to subsequent rounds of SAR determinations. A second method uses a small database of anuran AMPs with known potency (MIC values vs. E. coli) and selectivity (HC50 values vs. human erythrocytes), as well as the concept of longitudinal moment, to suggest sequences or sequence variations that can improve selectivity. These methods can assist in the initial design of novel AMPs with useful properties in vitro, but further development requires knowledge-based decisions and a sound prior understanding of how structural and physical attributes of this class of peptides affect their mechanism of action against bacteria and host cells.

Key words

  • α-Helical AMPs
  • Anuran AMPs
  • Amphipathicity
  • Hydrophobic moment
  • Longitudinal moment
  • D-descriptor

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6737-7_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6737-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Juretić D, Vukičević D, Petrov D et al (2011) Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J 40:371–385

    CrossRef  PubMed  Google Scholar 

  2. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30

    CAS  CrossRef  PubMed  Google Scholar 

  3. Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. Eur J Biochem 268:5589–5600

    CAS  CrossRef  PubMed  Google Scholar 

  4. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758:1436–1449

    CAS  CrossRef  PubMed  Google Scholar 

  5. Zelezetsky I, Pacor S, Pag U et al (2005) Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Zelezetsky I, Pag U, Sahl H-G, Tossi A (2005) Tuning the biological properties of amphipathic α-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides 26:2368–2376

    CAS  CrossRef  PubMed  Google Scholar 

  7. Juretić D, Vukičević D, Ilić N et al (2009) Computational design of highly selective antimicrobial peptides. J Chem Inf Model 49:2873–2882

    CrossRef  PubMed  Google Scholar 

  8. Ilić N, Novković M, Guida F et al (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 1828:1004–1012

    CrossRef  PubMed  Google Scholar 

  9. Kamech N, Vukičević D, Ladram A et al (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52:3341–3351

    CAS  CrossRef  PubMed  Google Scholar 

  10. Aguilera-Mendoza L, Marrero-Ponce Y, Tellez-Ibarra R et al (2015) Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences. Bioinformatics 31:2553–2559

    CAS  CrossRef  PubMed  Google Scholar 

  11. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    CrossRef  PubMed  Google Scholar 

  12. Pirtskhalava M, Gabrielian A, Cruz P et al (2016) DBAASP v. 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112

    CrossRef  PubMed  Google Scholar 

  13. Novkovic M, Simunic J, Bojovic V et al (2012) DADP: the database of anuran defense peptides. Bioinformatics 28:1406–1407

    CAS  CrossRef  PubMed  Google Scholar 

  14. Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205

    CAS  CrossRef  PubMed  Google Scholar 

  15. Tossi A, Sandri L, Giangaspero A (2002) New consensus hydrophobicity scale extended to non-proteinogenic amino acids. Peptides 27:416–417

    Google Scholar 

  16. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102

    CAS  CrossRef  PubMed  Google Scholar 

  17. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Chen Y-H, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry (Mosc) 13:3350–3359

    CAS  CrossRef  Google Scholar 

  19. Xhindoli D, Pacor S, Benincasa M et al (2016) The human cathelicidin LL-37 - a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858:546–566

    CAS  CrossRef  PubMed  Google Scholar 

  20. Pag U, Oedenkoven M, Sass V et al (2007) Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an -helical “sequence template”. J Antimicrob Chemother 61:341–352

    CrossRef  Google Scholar 

  21. Tossi A, Scocchi M, Zahariev S, Gennaro R (2012) Use of unnatural amino acids to probe structure–activity relationships and mode-of-action of antimicrobial peptides. In: Pollegioni L, Servi S (eds) Unnatural amino acids. Humana Press, Totowa, NJ, pp 169–183

    CrossRef  Google Scholar 

  22. Zelezetsky I, Pag U, Antcheva N et al (2005) Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch Biochem Biophys 434:358–364

    CAS  CrossRef  PubMed  Google Scholar 

  23. Tessera V, Guida F, Juretić D, Tossi A (2012) Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS J 279:724–736

    CAS  CrossRef  PubMed  Google Scholar 

  24. Uggerhøj LE, Poulsen TJ, Munk JK et al (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. Chembiochem 16:242–253

    CrossRef  PubMed  Google Scholar 

  25. Kozić M, Vukičević D, Simunić J et al (2015) Predicting the minimal inhibitory concentration for antimicrobial peptides with Rana-box domain. J Chem Inf Model 55:2275–2287

    CrossRef  PubMed  Google Scholar 

  26. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry (Mosc) 36:1826–1835

    CAS  CrossRef  Google Scholar 

  27. Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge funding from the Croatian Science Foundation project 8481 BioAmpMode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Juretić, D., Vukičević, D., Tossi, A. (2017). Tools for Designing Amphipathic Helical Antimicrobial Peptides. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols