Juretić D, Vukičević D, Petrov D et al (2011) Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J 40:371–385
CrossRef
PubMed
Google Scholar
Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30
CAS
CrossRef
PubMed
Google Scholar
Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. Eur J Biochem 268:5589–5600
CAS
CrossRef
PubMed
Google Scholar
Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758:1436–1449
CAS
CrossRef
PubMed
Google Scholar
Zelezetsky I, Pacor S, Pag U et al (2005) Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zelezetsky I, Pag U, Sahl H-G, Tossi A (2005) Tuning the biological properties of amphipathic α-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides 26:2368–2376
CAS
CrossRef
PubMed
Google Scholar
Juretić D, Vukičević D, Ilić N et al (2009) Computational design of highly selective antimicrobial peptides. J Chem Inf Model 49:2873–2882
CrossRef
PubMed
Google Scholar
Ilić N, Novković M, Guida F et al (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 1828:1004–1012
CrossRef
PubMed
Google Scholar
Kamech N, Vukičević D, Ladram A et al (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52:3341–3351
CAS
CrossRef
PubMed
Google Scholar
Aguilera-Mendoza L, Marrero-Ponce Y, Tellez-Ibarra R et al (2015) Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences. Bioinformatics 31:2553–2559
CAS
CrossRef
PubMed
Google Scholar
Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093
CrossRef
PubMed
Google Scholar
Pirtskhalava M, Gabrielian A, Cruz P et al (2016) DBAASP v. 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112
CrossRef
PubMed
Google Scholar
Novkovic M, Simunic J, Bojovic V et al (2012) DADP: the database of anuran defense peptides. Bioinformatics 28:1406–1407
CAS
CrossRef
PubMed
Google Scholar
Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205
CAS
CrossRef
PubMed
Google Scholar
Tossi A, Sandri L, Giangaspero A (2002) New consensus hydrophobicity scale extended to non-proteinogenic amino acids. Peptides 27:416–417
Google Scholar
Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102
CAS
CrossRef
PubMed
Google Scholar
Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chen Y-H, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry (Mosc) 13:3350–3359
CAS
CrossRef
Google Scholar
Xhindoli D, Pacor S, Benincasa M et al (2016) The human cathelicidin LL-37 - a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858:546–566
CAS
CrossRef
PubMed
Google Scholar
Pag U, Oedenkoven M, Sass V et al (2007) Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an -helical “sequence template”. J Antimicrob Chemother 61:341–352
CrossRef
Google Scholar
Tossi A, Scocchi M, Zahariev S, Gennaro R (2012) Use of unnatural amino acids to probe structure–activity relationships and mode-of-action of antimicrobial peptides. In: Pollegioni L, Servi S (eds) Unnatural amino acids. Humana Press, Totowa, NJ, pp 169–183
CrossRef
Google Scholar
Zelezetsky I, Pag U, Antcheva N et al (2005) Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch Biochem Biophys 434:358–364
CAS
CrossRef
PubMed
Google Scholar
Tessera V, Guida F, Juretić D, Tossi A (2012) Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS J 279:724–736
CAS
CrossRef
PubMed
Google Scholar
Uggerhøj LE, Poulsen TJ, Munk JK et al (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. Chembiochem 16:242–253
CrossRef
PubMed
Google Scholar
Kozić M, Vukičević D, Simunić J et al (2015) Predicting the minimal inhibitory concentration for antimicrobial peptides with Rana-box domain. J Chem Inf Model 55:2275–2287
CrossRef
PubMed
Google Scholar
Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry (Mosc) 36:1826–1835
CAS
CrossRef
Google Scholar
Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87
CAS
CrossRef
PubMed
Google Scholar