Advertisement

Protocols for Studying Inhibition and Eradication of Bacterial Biofilms by Antimicrobial Peptides

  • Vijayalekshmi Sarojini
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1548)

Abstract

Many pathogenic microorganisms have the ability to form biofilms that are impervious to conventional antibiotics making these pathogens resistant to multiple antibiotics. This necessitates the development of novel antimicrobial compounds with less chance of resistance development and the ability to penetrate the extracellular polymer matrix of bacterial biofilms. In this report, simple assays to test the antibiofilm potential of antimicrobial peptides are described.

Key words

Antimicrobial peptides Bacterial biofilms Antibiotic resistance Confocal microscopy Live/Dead stain Crystal violet stain 

References

  1. 1.
    Xu KD, McFeters GA, Stewart PS (2009) Biofilm resistance to antimicrobial agents. Microbiology 146:547–549CrossRefGoogle Scholar
  2. 2.
    Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701CrossRefPubMedGoogle Scholar
  3. 3.
    Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164CrossRefPubMedGoogle Scholar
  4. 4.
    Hancock RE (1997) Peptide antibiotics. Lancet 349:418–422CrossRefPubMedGoogle Scholar
  5. 5.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRefPubMedGoogle Scholar
  6. 6.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefPubMedGoogle Scholar
  7. 7.
    Grauer A, Konig B (2009) Peptidomimetics - a versatile route to biologically active compounds. European J Org Chem 30:5099–5111CrossRefGoogle Scholar
  8. 8.
    Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978CrossRefPubMedGoogle Scholar
  9. 9.
    Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203CrossRefPubMedGoogle Scholar
  10. 10.
    Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 3:491–511CrossRefGoogle Scholar
  11. 11.
    Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176CrossRefPubMedGoogle Scholar
  12. 12.
    Afacan NJ, Yeung ATY, Pena OM, Hancock REW (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 186:807–819CrossRefGoogle Scholar
  13. 13.
    Choi KY, Chow LNY, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4:361–370PubMedGoogle Scholar
  14. 14.
    Mok WWK, Li YF (2014) Therapeutic peptides: new arsenal against drug resistant pathogens. Curr Pharm Des 20:771–792CrossRefPubMedGoogle Scholar
  15. 15.
    Mansour SC, Pena OM, Hancock REW (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35:443–450CrossRefPubMedGoogle Scholar
  16. 16.
    Dutta P, Das S (2015) Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Curr Top Med Chem 16:99–129CrossRefGoogle Scholar
  17. 17.
    Mohammad H, Thangamani S, Seleem MN (2015) Antimicrobial peptides and peptidomimetics - potent therapeutic allies for staphylococcal infections. Curr Pharm Des 21:2073–2088CrossRefPubMedGoogle Scholar
  18. 18.
    Barrett JF (2001) Oritavancin Eli Lilly & Co. Curr Opin Investig Drugs 2:1039–1044PubMedGoogle Scholar
  19. 19.
    Toney JH (2002) Iseganan (intrabiotics pharmaceuticals). Curr Opin Investig Drugs 3:225–228PubMedGoogle Scholar
  20. 20.
    Sajjan US, Tran LT, Sole N, Rovaldi C, Akiyama A, Friden PM et al (2001) P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 45:3437–3444CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M et al (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45:1367–1373CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de la Fuente-Nunez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernandez D, Brackman G et al (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:196–205CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock RE (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10, e1004152CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Minardi D, Ghiselli R, Cirioni O, Giacometti A, Kamysz W, Orlando F et al (2007) The antimicrobial peptide tachyplesin III coated alone and in combination with intraperitoneal piperacillin-tazobactam prevents ureteral stent Pseudomonas infection in a rat subcutaneous pouch model. Peptides 28:2293–2298CrossRefPubMedGoogle Scholar
  25. 25.
    Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366–6371CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2009) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182CrossRefGoogle Scholar
  27. 27.
    Hell E, Giske CG, Nelson A, Romling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50:211–215CrossRefPubMedGoogle Scholar
  28. 28.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefPubMedGoogle Scholar
  29. 29.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  30. 30.
    De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V (2015) Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 58:625–639CrossRefPubMedGoogle Scholar
  31. 31.
    Kjaergaard K, Schembri MA, Hasman H, Klemm P (2000) Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J Bacteriol 182:4789–4796CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006PubMedPubMedCentralGoogle Scholar
  33. 33.
    Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2002) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179CrossRefGoogle Scholar
  34. 34.
    ASTM International E2196 – 12 (2002) Standard test method for quantification of a Pseudomonas aeruginosa biofilm grown with shear and continuous flow using a rotating disk reactor. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PAGoogle Scholar
  35. 35.
    O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations