Tools for Designing Amphipathic Helical Antimicrobial Peptides

  • Davor Juretić
  • Damir Vukičević
  • Alessandro TossiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1548)


Methods are described for the design of amphipathic helical AMPs, to improve potency and/or increase selectivity with respect to host cells. One method is based on the statistical analysis of known helical AMPs to derive a sequence template and ranges of charge, hydrophobicity, and amphipathicity (hydrophobic moment) values that lead to broad-spectrum activity, but leaves optimization for selectivity to subsequent rounds of SAR determinations. A second method uses a small database of anuran AMPs with known potency (MIC values vs. E. coli) and selectivity (HC50 values vs. human erythrocytes), as well as the concept of longitudinal moment, to suggest sequences or sequence variations that can improve selectivity. These methods can assist in the initial design of novel AMPs with useful properties in vitro, but further development requires knowledge-based decisions and a sound prior understanding of how structural and physical attributes of this class of peptides affect their mechanism of action against bacteria and host cells.

Key words

α-Helical AMPs Anuran AMPs Amphipathicity Hydrophobic moment Longitudinal moment D-descriptor 



Authors acknowledge funding from the Croatian Science Foundation project 8481 BioAmpMode.


  1. 1.
    Juretić D, Vukičević D, Petrov D et al (2011) Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J 40:371–385CrossRefPubMedGoogle Scholar
  2. 2.
    Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30CrossRefPubMedGoogle Scholar
  3. 3.
    Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. Eur J Biochem 268:5589–5600CrossRefPubMedGoogle Scholar
  4. 4.
    Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758:1436–1449CrossRefPubMedGoogle Scholar
  5. 5.
    Zelezetsky I, Pacor S, Pag U et al (2005) Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zelezetsky I, Pag U, Sahl H-G, Tossi A (2005) Tuning the biological properties of amphipathic α-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides 26:2368–2376CrossRefPubMedGoogle Scholar
  7. 7.
    Juretić D, Vukičević D, Ilić N et al (2009) Computational design of highly selective antimicrobial peptides. J Chem Inf Model 49:2873–2882CrossRefPubMedGoogle Scholar
  8. 8.
    Ilić N, Novković M, Guida F et al (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 1828:1004–1012CrossRefPubMedGoogle Scholar
  9. 9.
    Kamech N, Vukičević D, Ladram A et al (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52:3341–3351CrossRefPubMedGoogle Scholar
  10. 10.
    Aguilera-Mendoza L, Marrero-Ponce Y, Tellez-Ibarra R et al (2015) Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences. Bioinformatics 31:2553–2559CrossRefPubMedGoogle Scholar
  11. 11.
    Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093CrossRefPubMedGoogle Scholar
  12. 12.
    Pirtskhalava M, Gabrielian A, Cruz P et al (2016) DBAASP v. 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112CrossRefPubMedGoogle Scholar
  13. 13.
    Novkovic M, Simunic J, Bojovic V et al (2012) DADP: the database of anuran defense peptides. Bioinformatics 28:1406–1407CrossRefPubMedGoogle Scholar
  14. 14.
    Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205CrossRefPubMedGoogle Scholar
  15. 15.
    Tossi A, Sandri L, Giangaspero A (2002) New consensus hydrophobicity scale extended to non-proteinogenic amino acids. Peptides 27:416–417Google Scholar
  16. 16.
    Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102CrossRefPubMedGoogle Scholar
  17. 17.
    Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen Y-H, Yang JT, Chau KH (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry (Mosc) 13:3350–3359CrossRefGoogle Scholar
  19. 19.
    Xhindoli D, Pacor S, Benincasa M et al (2016) The human cathelicidin LL-37 - a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858:546–566CrossRefPubMedGoogle Scholar
  20. 20.
    Pag U, Oedenkoven M, Sass V et al (2007) Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an -helical “sequence template”. J Antimicrob Chemother 61:341–352CrossRefGoogle Scholar
  21. 21.
    Tossi A, Scocchi M, Zahariev S, Gennaro R (2012) Use of unnatural amino acids to probe structure–activity relationships and mode-of-action of antimicrobial peptides. In: Pollegioni L, Servi S (eds) Unnatural amino acids. Humana Press, Totowa, NJ, pp 169–183CrossRefGoogle Scholar
  22. 22.
    Zelezetsky I, Pag U, Antcheva N et al (2005) Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch Biochem Biophys 434:358–364CrossRefPubMedGoogle Scholar
  23. 23.
    Tessera V, Guida F, Juretić D, Tossi A (2012) Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS J 279:724–736CrossRefPubMedGoogle Scholar
  24. 24.
    Uggerhøj LE, Poulsen TJ, Munk JK et al (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. Chembiochem 16:242–253CrossRefPubMedGoogle Scholar
  25. 25.
    Kozić M, Vukičević D, Simunić J et al (2015) Predicting the minimal inhibitory concentration for antimicrobial peptides with Rana-box domain. J Chem Inf Model 55:2275–2287CrossRefPubMedGoogle Scholar
  26. 26.
    Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry (Mosc) 36:1826–1835CrossRefGoogle Scholar
  27. 27.
    Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Davor Juretić
    • 1
  • Damir Vukičević
    • 2
  • Alessandro Tossi
    • 3
    Email author
  1. 1.Mediterranean Institute for Life SciencesSplitCroatia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of SplitSplitCroatia
  3. 3.Department of Life SciencesUniversity of TriesteTriesteItaly

Personalised recommendations