Advertisement

Interaction of Extracellular Vesicles with Endothelial Cells Under Physiological Flow Conditions

  • Susan M. van Dommelen
  • Margaret Fish
  • Arjan D. Barendrecht
  • Raymond M. Schiffelers
  • Omolola Eniola-Adefeso
  • Pieter Vader
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1545)

Abstract

In the last few years it has become clear that, in addition to soluble molecules such as growth factors and cytokines, cells use extracellular vesicles (EVs) for intercellular communication. For example, EVs derived from cancer cells interact with endothelial cells, thereby affecting angiogenesis and metastasis, two essential processes in tumor progression. In most experiments, the interaction of EVs with target cells is investigated under static conditions. However the use of dynamic flow conditions is considered more relevant, especially when studying EV uptake by endothelial cells. Here, we describe the use of a perfusion system to investigate the interaction of (tumor) EVs with endothelial cells under dynamic flow conditions.

Key words

Binding Uptake Extracellular vesicles Physiological flow Endothelial cells Targeting 

Notes

Acknowledgments

The work of S.M.v.D., P.V., and R.M.S. on extracellular vesicles is supported by ERC Starting Grant 260627 ‘MINDS’ in the FP7 Ideas program of the EU. The work of OEA on endothelial cell response to shear flow is supported by an American Heart Association Scientist Development Grant (SDG 0735043N).

References

  1. 1.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289CrossRefPubMedGoogle Scholar
  2. 2.
    Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sluijter JPG, Verhage V, Deddens JC et al (2014) Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 102:302–311CrossRefPubMedGoogle Scholar
  4. 4.
    Vader P, Breakefield XO, Wood MJA (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20:385–393CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Al-Nedawi K, Meehan B, Kerbel RS et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106:3794–3799CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146CrossRefPubMedGoogle Scholar
  8. 8.
    Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801CrossRefPubMedGoogle Scholar
  9. 9.
    Xiong J-P, Stehle T, Goodman SL, Arnaout MA (2003) Integrins, cations and ligands: making the connection. J Thromb Haemost 1:1642–1654CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Susan M. van Dommelen
    • 1
  • Margaret Fish
    • 2
  • Arjan D. Barendrecht
    • 1
  • Raymond M. Schiffelers
    • 1
  • Omolola Eniola-Adefeso
    • 2
  • Pieter Vader
    • 1
  1. 1.Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations