Shotgun Metagenomic Sequencing Analysis of Soft-Rot Enterobacteriaceae in Polymicrobial Communities

  • James Doonan
  • Sandra Denman
  • James E. McDonald
  • Peter N. Golyshin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1539)

Abstract

Shotgun metagenomic sequencing of bacterial communities in necrotic plant lesions allows insights of host–pathogen molecular interactions. Soft-rot Enterobacteriaceae are significant crop pathogens with a wide host range. Reconstructed polymicrobial community DNA from soft-rot affected crops provides details of species relative abundance and functional potential, enabling significant insights into their lifestyle. Here, we describe a workflow for DNA recovery, metagenomic shotgun sequencing and in particular, an in silico analysis of bacterial isolates from affected plant tissue.

Key words

Shotgun metagenomics Host–pathogen molecular interactions Soft-rot Enterobacteriaceae Polymicrobial In silico 

References

  1. 1.
    Toth IK, Pritchard L, Birch PR (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 44:305–336CrossRefPubMedGoogle Scholar
  2. 2.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629CrossRefPubMedGoogle Scholar
  3. 3.
    Manulis S, Kobayashi DY, Keen NT (1988) Molecular cloning and sequencing of a pectate lyase gene from Yersinia pseudotuberculosis. J Bacteriol 170:1825–1830CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Toth IK, Bell KS, Holeva MC, Birch PR (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30CrossRefPubMedGoogle Scholar
  5. 5.
    Beaulieu C, Boccara M, Vangijsegem F (1993) Pathogenic behavior of pectinase-defective Erwinia chrysanthemi mutants on different plants. Mol Plant Microb Interact 6:197–202CrossRefGoogle Scholar
  6. 6.
    Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot erwinia. Annu Rev Phytopathol 32:201–234CrossRefGoogle Scholar
  7. 7.
    Nasser W, Reverchon S, Robert-Baudouy J (1992) Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. Mol Microbiol 6:257–265CrossRefPubMedGoogle Scholar
  8. 8.
    Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M et al (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8, e1003013CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193:6057–6069CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ochman H, Davalos LM (2006) The nature and dynamics of bacterial genomes. Science 311:1730–1733CrossRefPubMedGoogle Scholar
  11. 11.
    Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424CrossRefPubMedGoogle Scholar
  12. 12.
    Nowell RW, Green S, Laue BE, Sharp PM (2014) The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biol Evol 6:1514–1529CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369CrossRefPubMedGoogle Scholar
  14. 14.
    Marchi G, Sisto A, Cimmino A, Andolfi A, Cipriani MG, Evidente A, Surico G (2006) Interaction between Pseudomonas savastanoi pv. savastanoi and Pantoea agglomerans in olive knots. Plant Pathol 55:614–624CrossRefGoogle Scholar
  15. 15.
    Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA et al (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol 30:513–520CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13:787–794CrossRefPubMedGoogle Scholar
  17. 17.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  18. 18.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17(1):10–12CrossRefGoogle Scholar
  19. 19.
    Krueger F (2013) Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files.Google Scholar
  20. 20.
    Joshi N and Fass J (2011) Sickle. A sliding-window, adaptive, quality-based trimming tool for FastQ files.Google Scholar
  21. 21.
    Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069CrossRefPubMedGoogle Scholar
  24. 24.
    Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8, e1002358CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martinez-Garcia PM, Ramos C, Rodriguez-Palenzuela P (2015) T346Hunter: a novel web-based tool for the prediction of type III, type IV and type VI secretion systems in bacterial genomes. PLoS One 10, e0119317CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33:236–255CrossRefPubMedGoogle Scholar
  30. 30.
    Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VGH, McHardy AC, Nederbragt AJ, Pope PB (2015) Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. bioRxiv doi:  10.1101/026922.
  31. 31.
    Herlemann DP, Lundin D, Labrenz M, Jurgens K, Zheng Z, Aspeborg H, Andersson AF (2013) Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class Spartobacteria. MBio 4:e00569–12CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437CrossRefPubMedGoogle Scholar
  33. 33.
    Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 9:R55CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL et al (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ju F, Zhang T (2015) Experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology. Environ Sci Technol 49:12628–12640CrossRefPubMedGoogle Scholar
  37. 37.
    Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PA (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253CrossRefPubMedGoogle Scholar
  38. 38.
    Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F et al (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7, e1002130CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Maes M, Huvenne H, Messens E (2009) Brenneria salicis, the bacterium causing watermark disease in willow, resides as an endophyte in wood. Environ Microbiol 11:1453–1462CrossRefPubMedGoogle Scholar
  40. 40.
    Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40, e155CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Clark SC, Egan R, Frazier PI, Wang Z (2013) ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 29:435–443CrossRefPubMedGoogle Scholar
  43. 43.
    Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469CrossRefPubMedGoogle Scholar
  46. 46.
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Altschul SF, Gish W, Miller W, Myers E, Lipman D, Park U (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  48. 48.
    Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  50. 50.
    Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2015) GenBank. Nucleic Acids Res 43:D30–D35CrossRefPubMedGoogle Scholar
  51. 51.
    Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222CrossRefPubMedGoogle Scholar
  52. 52.
    Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W (1997) Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484CrossRefPubMedGoogle Scholar
  53. 53.
    Brady C, Hunter G, Kirk S, Arnold D, Denman S (2014) Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Syst Appl Microbiol 37:545–552CrossRefPubMedGoogle Scholar
  54. 54.
    Minot SS, Krumm N, Greenfield NB (2015) One codex : a sensitive and accurate data platform for genomic microbial identification. bioRxiv.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • James Doonan
    • 1
  • Sandra Denman
    • 2
  • James E. McDonald
    • 1
  • Peter N. Golyshin
    • 1
  1. 1.School of Biological SciencesBangor UniversityBangorUK
  2. 2.Centre for Ecosystems Society and BiosecurityForest ResearchSurreyUK

Personalised recommendations