Advertisement

Detection of Senescent Cells by Extracellular Markers Using a Flow Cytometry-Based Approach

  • Mohammad Althubiti
  • Salvador Macip
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1534)

Abstract

Senescence is a cellular process that is thought to have prognostic and therapeutic relevance in conditions such as cancer, aging, and fibrosis. However, current protocols for identifying senescent cells in vitro and in vivo have several drawbacks. Most markers used lack sufficient specificity and false positives and negatives in common. In addition, classical staining techniques often require lengthy protocols and do not offer objective quantification. Recently, several novel markers of senescence associated with the plasma membrane have been identified. Here, we propose to take advantage of these markers to define a customizable FACS-based protocol to detect senescent cells using antibodies tagged with fluorescence dyes. This method has the advantage of being fast and allowing quantitation. Furthermore, its specificity is increased using several markers simultaneously.

Key words

Senescence Extracellular markers Antibodies Flow cytometry SA-β-Gal 

Notes

Acknowledgments

This work was supported by an MRC New Blood Fellowship and an Innovation Fellowship from the University of Leicester, as well as a Saudi Government Doctoral Scholarship (to MA).

References

  1. 1.
    Perez-Mancera PA, Young AR, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14:547–558CrossRefPubMedGoogle Scholar
  2. 2.
    Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 153:1194–1217Google Scholar
  3. 3.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL (2014) Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 17:324–328CrossRefPubMedGoogle Scholar
  6. 6.
    Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496CrossRefPubMedGoogle Scholar
  7. 7.
    Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK (2013) Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease? J Intern Med 273:429–436CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101CrossRefPubMedGoogle Scholar
  9. 9.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kang TW, Yevsa T, Waller N, Hoenicke L, Wuesterfeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551CrossRefPubMedGoogle Scholar
  11. 11.
    Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476CrossRefPubMedGoogle Scholar
  12. 12.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819CrossRefPubMedGoogle Scholar
  14. 14.
    Yegorov YE, Akimov SS, Hass R, Zelenin AV, Prudovsky IA (1998) Endogenous beta-galactosidase activity in continuously nonproliferating cells. Exp Cell Res 243:207–211CrossRefPubMedGoogle Scholar
  15. 15.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642CrossRefPubMedGoogle Scholar
  16. 16.
    Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, Barlev N, Saldanha GS, Pritchard CA, Cain K, Macip S (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis 5:e1528CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cui H, Kong Y, Xu M, Zhang H (2013) Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 73:3451–3459CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85:502–511CrossRefPubMedGoogle Scholar
  19. 19.
    Chen Q, Ames BN (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91:4130–4134CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefPubMedGoogle Scholar
  21. 21.
    Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci U S A 94:9648–9653CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, Roninson IB (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18:4808–4818CrossRefPubMedGoogle Scholar
  23. 23.
    Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell BiologyUniversity of LeicesterLE1 7RH, LeicesterUK
  2. 2.Cancer Research UK Leicester CentreLeicesterUK
  3. 3.Department of Biochemistry, Faculty of MedicineUmm Al-Qura UniversityMeccaSaudi Arabia

Personalised recommendations