Advertisement

Automated Patch Clamp Recordings of Human Stem Cell-Derived Cardiomyocytes

  • Alison ObergrussbergerEmail author
  • Claudia Haarmann
  • Sonja Stölzle-Feix
  • Nadine Becker
  • Atsushi Ohtsuki
  • Andrea Brüggemann
  • Michael George
  • Niels Fertig
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Patch clamp remains the gold standard for studying ion channel activity within cell membranes. Conventional patch clamp is notoriously low throughput and technically demanding making it an unsuitable technique for high-throughput screening (HTS). Automated patch clamp (APC) devices have done much to increase throughput and improve ease of use, particularly when using standard cell line cells such as HEK and CHO. In recent years, however, the use of human-induced pluripotent stem cells (hiPSCs) has become increasingly important, especially for safety screening in response to the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative introduced in 2013. The goal of this initiative is to standardize assays, targets, and cell types. One part of the paradigm focuses on the use of APC and hiPSC cardiomyocytes. This chapter describes two automated patch clamp devices recording from up to 8 or 384 cells simultaneously using hiPSC cardiomyocytes. In the voltage clamp mode, voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels could be recorded, and pharmacology using tetracaine, a NaV channel blocker, is described. Additionally, action potentials in the current clamp mode were recorded, and examples are shown including the effect of nifedipine, a CaV channel blocker. Detailed methods are provided for cell culture and harvesting of hiPSCs for use on APC devices. Protocols are also provided for voltage and current clamp recordings on the Patchliner, and voltage clamp experiments on the SyncroPatch 384PE APC instruments.

Key words

Automated patch clamp Patchliner SyncroPatch 384PE hiPSC-derived cardiomyocytes Voltage clamp Current clamp Ion channels Voltage-gated Na+ Voltage-gated K+ Voltage-gated Ca2+ 

Notes

Acknowledgments

We thank Cellular Dynamics International (CDI), Madison, Wisconsin, for the collaboration and for providing us with cardiomyocytes (iCell cardiomyocytes). We also thank Axiogenesis AG, Cologne, Germany, for the collaboration and for providing us with cardiomyocytes (Cor.4U). We also thank Pluriomics for providing us with the Pluricytes.

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work presented here was funded in part by the Bundesministerium fuer Bildung und Forschung (BMBF, grant 01QE1502).

References

  1. 1.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802. doi: 10.1038/260799a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Dunlop J, Bowlby M, Peri R et al (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368. doi: 10.1038/nrd2552 CrossRefPubMedGoogle Scholar
  3. 3.
    Farre C, Haythornthwaite A, Haarmann C et al (2009) Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. Comb Chem High Throughput Screen 12:24–37. doi: 10.2174/138620709787047966 CrossRefPubMedGoogle Scholar
  4. 4.
    Brüggemann A, George M, Klau M et al (2003) The NPC © Technology. Assay Drug Dev Technol 1:665–673CrossRefPubMedGoogle Scholar
  5. 5.
    Brueggemann A, George M, Klau M et al (2004) Ion channel drug discovery and research: the automated Nano-Patch-Clamp © technology. Curr Drug Discov Technol 1:91–96CrossRefPubMedGoogle Scholar
  6. 6.
    Brüggemann A, Stoelzle S, George M et al (2006) Microchip technology for automated and parallel patch-clamp recording. Small 2:840–846. doi: 10.1002/smll.200600083 CrossRefPubMedGoogle Scholar
  7. 7.
    Jones KA, Garbati N, Zhang H, Large CH (2009) Automated patch clamping using the QPatch. In: Janzen WP, Bernasconi P (eds) High throughput screening: methods and protocols, 2nd edn. Humana Press, a part of Springer Science & Business Media, Totowa, pp 209–223CrossRefGoogle Scholar
  8. 8.
    Mathes C, Friis S, Finley M, Liu Y (2009) QPatch: the missing link between HTS and ion channel drug discovery. Comb Chem High Throughput Screen 12:78–95. doi: 10.2174/138620709787047948 CrossRefPubMedGoogle Scholar
  9. 9.
    Tao H, Santa Ana D, Guia A et al (2004) Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev Technol 2:497–506. doi: 10.1089/adt.2004.2.497 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu J, Guia A, Rothwarf D et al (2003) A benchmark study with SealChipTM planar patch-clamp technology. Assay Drug Dev Technol 1:675–684. doi: 10.1089/154065803770381039 CrossRefPubMedGoogle Scholar
  11. 11.
    Stoelzle S, Obergrussberger A, Brüggemann A et al (2011) State-of-the-art automated patch clamp devices: heat activation, action potentials, and high throughput in ion channel screening. Front Pharmacol 2:1–11. doi: 10.3389/fphar.2011.00076 CrossRefGoogle Scholar
  12. 12.
    Obergrussberger A, Haarmann C, Rinke I et al (2014) Automated patch clamp analysis of nAChα7 and NaV 1.7 channels. Curr Protoc Pharmacol 65:11.13.1–11.13.48. doi: 10.1002/0471141755.ph1113s65 CrossRefGoogle Scholar
  13. 13.
    Schroeder K, Neagle B, Trezise DJ, Worley J (2003) IonWorks HT: a new high-throughput electrophysiology measurement platform. J Biomol Screen 8:50–64. doi: 10.1177/1087057102239667 CrossRefPubMedGoogle Scholar
  14. 14.
    Finkel A, Wittel A, Yang N et al (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen 11:488–496. doi: 10.1177/1087057106288050 CrossRefPubMedGoogle Scholar
  15. 15.
    Gillie DJ, Novick SJ, Donovan BT et al (2013) Development of a high-throughput electrophysiological assay for the human ether-à-go-go related potassium channel hERG. J Pharmacol Toxicol Methods 67:33–44. doi: 10.1016/j.vascn.2012.10.002 CrossRefPubMedGoogle Scholar
  16. 16.
    Kuryshev YA, Brown AM, Duzic E, Kirsch GE (2014) Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays. Assay Drug Dev Technol 12:110–119. doi: 10.1089/adt.2013.552 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scheel O, Himmel H, Rascher-Eggstein G, Knott T (2011) Introduction of a modular automated voltage-clamp platform and its correlation with manual human Ether-à-go-go related gene voltage-clamp data. Assay Drug Dev Technol 9:600–607. doi: 10.1089/adt.2010.0352 CrossRefPubMedGoogle Scholar
  18. 18.
    Spencer CI, Li N, Chen Q et al (2012) Ion channel pharmacology under flow: automation via well-plate microfluidics. Assay Drug Dev Technol 10:313–324. doi: 10.1089/adt.2011.414 CrossRefPubMedGoogle Scholar
  19. 19.
    Obergrussberger A, Stölzle-Feix S, Becker N et al (2015) Novel screening techniques for ion channel targeting drugs. Channels 9:367–375. doi: 10.1080/19336950.2015.1079675 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Obergrussberger A, Brüggemann A, Goetze TA et al (2015) Automated patch clamp meets high-throughput screening: 384 cells recorded in parallel on a planar patch clamp module. J Lab Autom. doi: 10.1177/2211068215623209 PubMedGoogle Scholar
  21. 21.
    Sager PT, Gintant G, Turner JR et al (2014) Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 167:292–300. doi: 10.1016/j.ahj.2013.11.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Fermini B, Hancox JC, Abi-Gerges N et al (2015) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen. doi: 10.1177/1087057115594589 PubMedGoogle Scholar
  23. 23.
    Cavero I, Holzgrefe H (2014) Comprehensive in vitro proarrhythmia assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opin Drug Saf 13:745–758. doi: 10.1517/14740338.2014.915311 CrossRefPubMedGoogle Scholar
  24. 24.
    Becker N, Stoelzle S, Göpel S et al (2013) Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system. J Pharmacol Toxicol Methods 68:82–87. doi: 10.1016/j.vascn.2013.03.009 CrossRefPubMedGoogle Scholar
  25. 25.
    Rajamohan D, Kalra S, Hoang MD et al (2016) Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev 25. doi: 10.1089/scd.2015.0253
  26. 26.
    Haythornthwaite A, Stoelzle S, Hasler A et al (2012) Characterizing human ion channels in induced pluripotent stem cell-derived neurons. J Biomol Screen 17:1264–1272. doi: 10.1177/1087057112457821 CrossRefPubMedGoogle Scholar
  27. 27.
    Meijer van Putten RME, Mengarelli I, Guan K et al (2015) Ion channelopathies in human induced pluripotent stem cell derived cardiomyocytes: a dynamic clamp study with virtual IK1. Front Physiol 6:Article 7. doi: 10.3389/fphys.2015.00007
  28. 28.
    Shen JB, Jiang B, Pappano AJ (2000) Comparison of L-type calcium channel blockade by nifedipine and/or cadmium in guinea pig ventricular myocytes. J Pharmacol Exp Ther 294:562–570PubMedGoogle Scholar
  29. 29.
    Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14:1084–1090PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kass RS, Krafte DS (1987) Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J Gen Physiol 89:629–644. doi: 10.1085/jgp.89.4.629 CrossRefPubMedGoogle Scholar
  31. 31.
    Charnet P, Bourinet E, Dubel SJ et al (1994) Calcium currents recorded from a neuronal alpha 1C L-type calcium channel in Xenopus oocytes. FEBS Lett 344:87–90CrossRefPubMedGoogle Scholar
  32. 32.
    Sheets MF, Hanck DA (1999) Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J Physiol 514(Pt 2):425–436Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Alison Obergrussberger
    • 1
    Email author
  • Claudia Haarmann
    • 1
  • Sonja Stölzle-Feix
    • 1
  • Nadine Becker
    • 1
  • Atsushi Ohtsuki
    • 2
  • Andrea Brüggemann
    • 1
  • Michael George
    • 1
  • Niels Fertig
    • 1
  1. 1.Nanion Technologies GmbHMunichGermany
  2. 2.Nanion Technologies GmbH, Tokyo Laboratory, Medical Innovation LaboratoryTokyo Women’s Medical University and Waseda University Joint Institution for Advanced Biomedical SciencesTokyoJapan

Personalised recommendations