Applications of Normal Mode Analysis Methods in Computational Protein Design

  • Vincent Frappier
  • Matthieu Chartier
  • Rafael NajmanovichEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1529)


Recent advances in coarse-grained normal mode analysis methods make possible the large-scale prediction of the effect of mutations on protein stability and dynamics as well as the generation of biologically relevant conformational ensembles. Given the interplay between flexibility and enzymatic activity, the combined analysis of stability and dynamics using the Elastic Network Contact Model (ENCoM) method has ample applications in protein engineering in industrial and medical applications such as in computational antibody design. Here, we present a detailed tutorial on how to perform such calculations using ENCoM.

Key words

Normal mode analysis Protein stability Protein dynamics Mutations Vibrational entropy Protein engineering 



R.J.N. is part of PROTEO (the Québec network for research on protein function, structure and engineering), and GRASP (Groupe de Recherche Axé sur la Structure des Protéines). The authors would like to thank Dr. Luis Serrano for giving his permission to use FoldX within the ENCoM server.

Funding: V.F. is the recipient of a Ph.D. fellowship from the Fonds de Recherche du Québec—Nature et Technologies (FRQ-NT); M.C. is the recipient of a Ph.D. fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). NSERC Discovery Grant RGPIN-2014-05766.


  1. 1.
    Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200CrossRefPubMedGoogle Scholar
  2. 2.
    Ulmer KM (1983) Protein engineering. Science 219:666–671CrossRefPubMedGoogle Scholar
  3. 3.
    Ott K-H, Kwagh J-G, Stockton GW, Sidorov V, Kakefuda G (1996) Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol 263:359–368CrossRefPubMedGoogle Scholar
  4. 4.
    Diskin R, Scheid JF, Marcovecchio PM, West AP, Klein F, Gao H, Gnanapragasam PNP, Abadir A, Seaman MS, Nussenzweig MC, Bjorkman PJ (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334:1289–1293CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Socha RD, Tokuriki N (2013) Modulating protein stability – directed evolution strategies for improved protein function. FEBS J 280:5582–5595CrossRefPubMedGoogle Scholar
  6. 6.
    Khersonsky O, Roodveldt C, Tawfik D (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508CrossRefPubMedGoogle Scholar
  7. 7.
    Carlson JC, Badran AH, Guggiana-Nilo DA, Liu DR (2014) Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol 10:216–222CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dickinson BC, Leconte AM, Allen B, Esvelt KM, Liu DR (2013) Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci U S A 110:9007–9012CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang S-B, Wu Z-L (2011) Identification of amino acid residues responsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresour Technol 102:2093–2096CrossRefPubMedGoogle Scholar
  12. 12.
    Thiltgen G, Goldstein RA (2012) Assessing predictors of changes in protein stability upon mutation using self-consistency. PLoS One 7, e46084CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kepp KP (2014) Computing stability effects of mutations in human superoxide dismutase 1. J Phys Chem B 118:1799–1812CrossRefPubMedGoogle Scholar
  14. 14.
    Teilum K, Olsen JG, Kragelund BB (2011) Protein stability, flexibility and function. Biochim Biophys Acta 1818:969–976CrossRefGoogle Scholar
  15. 15.
    Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386CrossRefPubMedGoogle Scholar
  16. 16.
    van den Burg B, Eijsink VGH (2002) Selection of mutations for increased protein stability. Curr Opin Biotechnol 13:333–337CrossRefPubMedGoogle Scholar
  17. 17.
    Bloom JD, Meyer MM, Meinhold P, Otey CR, MacMillan D, Arnold FH (2005) Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15:447–452CrossRefPubMedGoogle Scholar
  18. 18.
    Shoichet BK, Baase WA, Kuroki R, Matthews BW (1995) A relationship between protein stability and protein function. Proc Natl Acad Sci U S A 92:452–456CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ruller R, Deliberto L, Ferreira TL, Ward RJ (2007) Thermostable variants of the recombinant xylanase a from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 70:1280–1293CrossRefGoogle Scholar
  21. 21.
    Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D (2004) Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nat Struct Mol Biol 11:945–949CrossRefPubMedGoogle Scholar
  22. 22.
    Frappier V, Najmanovich RJ (2015) Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering. Protein Sci 24:474–483CrossRefPubMedGoogle Scholar
  23. 23.
    Jiménez-Osés G, Osuna S, Gao X, Sawaya MR, Gilson L, Collier SJ, Huisman GW, Yeates TO, Tang Y, Houk KN (2014) The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol 10:431–436CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gaudreault F, Chartier M, Najmanovich RJ (2012) Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding. Bioinformatics 28:i423–i430CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gaudreault F, Najmanovich RJ (2015) FlexAID: revisiting docking on non-native-complex structures. J Chem Inf ModelGoogle Scholar
  27. 27.
    van den Bedem H, Bhabha G, Yang K, Wright PE, Fraser JS (2013) Automated identification of functional dynamic contact networks from X-ray crystallography. Nat Methods 10:896–902CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Doucet N (2011) Can enzyme engineering benefit from the modulation of protein motions? Lessons learned from NMR relaxation dispersion experiments. Protein Pept Lett 18:336–343CrossRefPubMedGoogle Scholar
  29. 29.
    Elvin JG, Couston RG, van der Walle CF (2013) Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharm 440:83–98CrossRefPubMedGoogle Scholar
  30. 30.
    Zimmermann J, Zimmermann J, Oakman EL, Oakman EL, Thorpe IF, Thorpe IF, Shi X, Shi X, Abbyad P, Abbyad P, Brooks CL, Brooks CL, Boxer SG, Boxer SG, Romesberg FE, Romesberg FE (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci U S A 103:13722–13727CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring the energy landscape of antibody−antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47:7237–7247CrossRefPubMedGoogle Scholar
  32. 32.
    Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380:742–756CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kellogg EH, Leaver-Fay A, Baker D (2010) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79:830–838CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Davey JA, Chica RA (2013) Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles. Proteins 82:771–784CrossRefPubMedGoogle Scholar
  36. 36.
    LeVine MV, Weinstein H (2014) NbIT – a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput Biol 10, e1003603CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mahajan S, Sanejouand Y-H (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65CrossRefPubMedGoogle Scholar
  38. 38.
    Fuglebakk E, Tiwari SP, Reuter N (2015) Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochim Biophys Acta 1850:911–922CrossRefPubMedGoogle Scholar
  39. 39.
    Tirion M (1996) Large amplitude elastic motions in proteins from a single-parameter. Atom Anal Phys Rev Lett 77:1905–1908CrossRefGoogle Scholar
  40. 40.
    Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7CrossRefPubMedGoogle Scholar
  41. 41.
    Abagyan R, Rueda M, Bottegoni G (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49:716–725CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Park S-J, Kufareva I, Abagyan R (2010) Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. J Comput Aided Mol Des 24:459–471CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated Web tool. Protein Sci 14:633–643CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schröder GF, Brunger AT, Levitt M (2007) Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15:1630–1641CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tama F, Valle M, Frank J, Brooks C (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci U S A 100:9319–9323CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Frappier V, Najmanovich RJ (2014) A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations. PLoS Comput Biol 10:e1003569CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lin T-L, Song G (2010) Generalized spring tensor models for protein fluctuation dynamics and conformation changes. BMC Struct Biol 10(Suppl 1):3CrossRefGoogle Scholar
  48. 48.
    Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M (2009) Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25:2537–2543CrossRefPubMedGoogle Scholar
  50. 50.
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–W388CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban Y-EA, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popović Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Frappier V, Chartier M, Najmanovich RJ (2015) ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids ResGoogle Scholar
  54. 54.
    Boehr DD, Schnell JR, McElheny D, Bae S-H, Duggan BM, Benkovic SJ, Dyson HJ, Wright PE (2013) A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Biochemistry 52:4605–4619CrossRefPubMedGoogle Scholar
  55. 55.
    Gekko K, Yamagami K, Kunori Y, Ichihara S, Kodama M, Iwakura M (1993) Effects of point mutation in a flexible loop on the stability and enzymatic function of Escherichia coli dihydrofolate reductase. J Biochem 113:74–80CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Vincent Frappier
    • 1
    • 3
  • Matthieu Chartier
    • 3
  • Rafael Najmanovich
    • 2
    • 3
    Email author
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Pharmacology and PhysiologyFaculty of Medicine, Université de MontrealMontrealCanada
  3. 3.Faculty of Medicine and Health Sciences, Department of BiochemistryUniversity of SherbrookeNordSherbrookeCanada

Personalised recommendations