Computational Tools for Aiding Rational Antibody Design

  • Konrad Krawczyk
  • James Dunbar
  • Charlotte M. Deane
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1529)

Abstract

Antibodies are a group of proteins responsible for mediating immune reactions in vertebrates. They are able to bind a variety of structural motifs on noxious molecules tagging them for elimination from the organism. As a result of their versatile binding properties, antibodies are currently one of the most important classes of biopharmaceuticals. In this chapter, we discuss how knowledge-based computational methods can aid experimentalists in the development of potent antibodies. When using common experimental methods for antibody development, we often know the sequence of an antibody that binds to our molecule, antigen, of interest. We may also have a structure or model of the antigen. In these cases, computational methods can help by both modeling the antibody and identifying the antibody–antigen contact residues. This information can then play a key role in the rational design of more potent antibodies.

Key words

Antibodies Antibody modeling Rational antibody design Antibody–antigen interactions Antibody VH–VL orientation CDR loop modeling 

References

  1. 1.
    Robinson WH (2014) Sequencing the functional antibody repertoire-diagnostic and therapeutic discovery. Nat Rev Rheumatol 11:171–182. doi:10.1038/nrrheum.2014.220 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A 74:5140–5144CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Murad JP, Lin OA, Espinosa EV, Khasawneh FT (2012) Current and experimental antibody-based therapeutics: insights, breakthroughs, setbacks and future directions. Curr Mol Med 13:165–178CrossRefGoogle Scholar
  4. 4.
    Reichert JM (2014) Antibodies to watch in 2014: mid-year update. MAbs 6:799–802. doi:10.4161/mabs.29282 CrossRefPubMedGoogle Scholar
  5. 5.
    Reichert JM (2013) Which are the antibodies to watch in 2013? MAbs 5:1–4. doi:10.4161/mabs.22976 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reichert JM (2010) Antibodies to watch in 2010. MAbs 2:84–100, doi: 10677 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. Protein Eng Des Sel 25:507–521. doi:10.1093/protein/gzs024 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lapidoth GD, Baran D, Pszolla GM et al (2015) AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83:1385–1406CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pantazes RJ, Maranas CD (2010) OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel 11:849–858CrossRefGoogle Scholar
  10. 10.
    Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25:1171–1176CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29PubMedGoogle Scholar
  12. 12.
    Martin ACR (2010) Protein sequence and structure analysis of antibody variable domains. In: Antibody engineering, vol 2. Springer, Berlin, pp 33–51CrossRefGoogle Scholar
  13. 13.
    Safdari Y, Farajnia S, Asgharzadeh M, Khalili M (2013) Antibody humanization methods–a review and update. Biotechnol Genet Eng Rev 29:175–186. doi:10.1080/02648725.2013.801235 CrossRefPubMedGoogle Scholar
  14. 14.
    Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1:189–203. doi:10.1093/bfgp/1.2.189 CrossRefPubMedGoogle Scholar
  15. 15.
    Kretzschmar T, Von Rüden T (2002) Antibody discovery: phage display. Curr Opin Biotechnol 13:598–602. doi:10.1016/S0958-1669(02)00380-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Dunbar J, Krawczyk K, Leem J et al (2013) SAbDab: the structural antibody database. Nucleic Acids Res 42(Database issue):D1140–D1146PubMedPubMedCentralGoogle Scholar
  17. 17.
    Almagro JC, Teplyakov A, Luo J et al (2014) Second antibody modeling assessment (AMA-II). Proteins 82:1553–1562. doi:10.1002/prot.24567 CrossRefPubMedGoogle Scholar
  18. 18.
    Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948. doi:10.1006/jmbi.1997.1354 CrossRefPubMedGoogle Scholar
  20. 20.
    Abhinandan KR, Martin ACR (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839CrossRefPubMedGoogle Scholar
  21. 21.
    Lefranc MP (2011) IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 6:633–642Google Scholar
  22. 22.
    Honegger A, Plückthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670. doi:10.1006/jmbi.2001.4662 CrossRefPubMedGoogle Scholar
  23. 23.
    Ehrenmann F, Kaas Q, Lefranc M (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 38:D301–D307CrossRefPubMedGoogle Scholar
  24. 24.
    Adolf-Bryfogle J, Xu Q, North B et al (2015) PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res 43:D432–D438CrossRefPubMedGoogle Scholar
  25. 25.
    MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745. doi:10.1006/jmbi.1996.0548 CrossRefPubMedGoogle Scholar
  26. 26.
    Lefranc M, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77CrossRefPubMedGoogle Scholar
  27. 27.
    North B, Lehmann A, Dunbrack RL Jr (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 2:228–256CrossRefGoogle Scholar
  28. 28.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 4:901–917CrossRefGoogle Scholar
  30. 30.
    Chothia C, Lesk AM, Tramontano A et al (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883CrossRefPubMedGoogle Scholar
  31. 31.
    Tramontano A, Chothia C, Lesk AM (1989) Structural determinants of the conformations of medium-sized loops in proteins. Proteins 6:382–394CrossRefPubMedGoogle Scholar
  32. 32.
    Martin ACR (1996) Accessing the Kabat antibody sequence database by computer. Proteins 25:130–133CrossRefPubMedGoogle Scholar
  33. 33.
    Oliva B, Bates PA, Querol E et al (1998) Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J Mol Biol 279:1193–1210CrossRefPubMedGoogle Scholar
  34. 34.
    Nikoloudis D, Pitts JE, Street M, Ridgeway T (2014) A complete, multi-level conformational clustering of antibody complementarity-determining regions. PeerJ 2:e456CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440. doi:10.1002/prot.22658 PubMedGoogle Scholar
  36. 36.
    Choi Y, Deane CM (2011) Predicting antibody complementarity determining region structures without classification. Mol Biosyst 7:3327–3334CrossRefPubMedGoogle Scholar
  37. 37.
    Morea V, Tramontano A, Rustici M et al (1998) Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol 275:269–294CrossRefPubMedGoogle Scholar
  38. 38.
    Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins 73:608–620. doi:10.1002/prot.22087 CrossRefPubMedGoogle Scholar
  39. 39.
    Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24:1953–1954CrossRefPubMedGoogle Scholar
  40. 40.
    Shirai H, Ikeda K, Yamashita K et al (2014) High-resolution modeling of antibody structures by a combination of bioinformatics, expert knowledge, and molecular simulations. Proteins 82:1624–1635CrossRefPubMedGoogle Scholar
  41. 41.
    Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327CrossRefPubMedGoogle Scholar
  42. 42.
    Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499CrossRefPubMedGoogle Scholar
  43. 43.
    Chatellier J, Van Regenmortel MH, Vernet T, Altschuh D (1996) Functional mapping of conserved residues located at the VL and VH domain interface of a Fab. J Mol Biol 264:1–6. doi:10.1006/jmbi.1996.0618 CrossRefPubMedGoogle Scholar
  44. 44.
    Banfield MJ, King DJ, Mountain A, Brady RL (1997) VL:VH domain rotations in engineered antibodies: crystal structures of the Fab fragments from two murine antitumor antibodies and their engineered human constructs. Proteins 29:161–171CrossRefPubMedGoogle Scholar
  45. 45.
    Khalifa MB, Weidenhaupt M, Choulier L et al (2000) Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context. J Mol Recognit 13:127–139. doi:10.1002/1099-1352(200005/06)13:3<127::AID-JMR495>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  46. 46.
    Nakanishi T, Tsumoto K, Yokota A et al (2008) Critical contribution of VH–VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 17:261–270. doi:10.1110/ps.073156708.Protein CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fera D, Schmidt AG, Haynes BF et al (2014) Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 111:10275–10280. doi:10.1073/pnas.1409954111 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Whitelegg NR, Rees AR (2000) WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng 12:819–824CrossRefGoogle Scholar
  49. 49.
    Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41:W34–W40. doi:10.1093/nar/gkt382 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Narayanan A, Sellers BD, Jacobson MP (2009) Energy-based analysis and prediction of the orientation between light-chain and heavy-chain antibody variable domains. J Mol Biol 388:941–953. doi:10.1016/j.jmb.2009.03.043 CrossRefPubMedGoogle Scholar
  51. 51.
    Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74:497–514CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dunbar J, Fuchs A, Shi J, Deane CM (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26:611–620CrossRefPubMedGoogle Scholar
  53. 53.
    Abhinandan KR, Martin ACR (2010) Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel 23:689–697CrossRefPubMedGoogle Scholar
  54. 54.
    Bujotzek A, Dunbar J, Lipsmeier F et al (2015) Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83:681–695CrossRefPubMedGoogle Scholar
  55. 55.
    Krawczyk K, Baker T, Shi J, Deane CM (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26:621–629. doi:10.1093/protein/gzt043 CrossRefPubMedGoogle Scholar
  56. 56.
    Kunik V, Peters B, Ofran Y (2012) Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol 8:e100238. doi:10.1371/journal.pcbi.1002388 CrossRefGoogle Scholar
  57. 57.
    Kunik V, Ashkenazi S, Ofran Y (2012) Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res 40:W521–W524. doi:10.1093/nar/gks480 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Olimpieri PP, Chailyan A, Tramontano A, Marcatili P (2013) Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics 29:2285–2291. doi:10.1093/bioinformatics/btt369 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shirai H, Prades C, Vita R et al (2014) Antibody informatics for drug discovery. Biochim Biophys Acta 1844:2002–2015. doi:10.1016/j.bbapap.2014.07.006 CrossRefPubMedGoogle Scholar
  62. 62.
    Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530. doi:10.1093/nar/gks438 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26:599–609CrossRefPubMedGoogle Scholar
  65. 65.
    Sela-Culang I, Benhnia MREI, Matho MH et al (2014) Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure 22:646–657. doi:10.1016/j.str.2014.02.003 CrossRefPubMedGoogle Scholar
  66. 66.
    Krawczyk K, Liu X, Baker T et al (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30:2288–2294. doi:10.1093/bioinformatics/btu190 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brenke R, Hall DR, Chuang GY et al (2012) Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics 28:2608–2614. doi:10.1093/bioinformatics/bts493 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein docking algorithm. Proteins 1:80–87CrossRefGoogle Scholar
  69. 69.
    Sircar A, Gray JJ (2010) SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol 6:e1000644. doi:10.1371/journal.pcbi.1000644 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37:W474–W479. doi:10.1093/nar/gkp387 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Konrad Krawczyk
    • 1
  • James Dunbar
    • 1
  • Charlotte M. Deane
    • 1
  1. 1.Department of StatisticsUniversity of OxfordOxfordUK

Personalised recommendations