Antibiotics pp 121-131 | Cite as

Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds

  • Carolin Martina Kobras
  • Thorsten Mascher
  • Susanne GebhardEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)


Whole-cell biosensors, based on the visualization of a reporter strain’s response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple “spot-on-lawn” assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

Key words

Bio-assay Reporter gene Cell envelope stress Cell wall Antibiotic Antimicrobial peptide Stress response Luminescence Lipid II cycle 


  1. 1.
    Nic M, Jirat J, Kosata B (2014) IUPAC compendium of chemical terminology—the gold book. Accessed 15 Dec 2015
  2. 2.
    Park M, Tsai S-L, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13:5777–5795CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  4. 4.
    Mascher T, Zimmer SL, Smith T-A, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kremers G-J, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160CrossRefPubMedGoogle Scholar
  6. 6.
    Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schrecke K, Jordan S, Mascher T (2013) Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis. Mol Microbiol 87:769–788. doi: 10.1111/mmi.12130 CrossRefPubMedGoogle Scholar
  8. 8.
    Cao M, Wang T, Ye R, Helmann JD (2002) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 45:1267–1276CrossRefPubMedGoogle Scholar
  9. 9.
    Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604CrossRefPubMedGoogle Scholar
  10. 10.
    Staroń A, Finkeisen DE, Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:515–525CrossRefPubMedGoogle Scholar
  11. 11.
    Helmann JD, Mascher T (2005) Compositions and methods for screening of antibacterial compounds. US Patent 7309484Google Scholar
  12. 12.
    Radeck J, Kraft K, Bartels J, Cikovic T, Dürr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T (2013) The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 7:29CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B, Muffler A, Rodriguez S, Perkins J, Losick R (2010) Small genes under sporulation control in the Bacillus subtilis genome. J Bacteriol 192:5402–5412CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jordan S, Rietkötter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153:2530–2540CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Carolin Martina Kobras
    • 1
  • Thorsten Mascher
    • 2
  • Susanne Gebhard
    • 1
    Email author
  1. 1.Department of Biology and Biochemistry, Milner Centre for EvolutionUniversity of BathClaverton Down, BathUK
  2. 2.Institut für MikrobiologieTechnische Universität DresdenDresdenGermany

Personalised recommendations