Histones pp 121-148 | Cite as

Characterization of Individual Histone Posttranslational Modifications and Their Combinatorial Patterns by Mass Spectrometry-Based Proteomics Strategies

Part of the Methods in Molecular Biology book series (MIMB, volume 1528)


Histone posttranslational modifications (PTMs) play an essential role in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. Such PTMs are mostly localized on histone N-terminal tails where, as single units or in a combinatorial manner, they influence chromatin reader protein binding and fine-tune the abovementioned activities. Mass spectrometry (MS) is currently the most adopted strategy to characterize proteins and protein PTMs. We hereby describe the protocols to identify and quantify histone PTMs and their patterns using either bottom-up or middle-down proteomics. In the bottom-up strategy we obtain 5–20 aa peptides by derivatization with propionylation followed by trypsin digestion. The newly generated N-termini of histone peptides can be further derivatized with light or isotopically heavy propionyl groups to increase chromatographic retention and allow multiplexed analyses. Moreover, we describe how to perform derivatization and trypsin digestion of histones loaded into a gel, which is usually the final step of immunoprecipitation experiments. In the middle-down strategy we obtain intact histone tails of 50–60 aa by digestion with the enzyme GluC. This allows characterization of combinatorial histone PTMs on N-terminal tails.

Key words

Histones Mass spectrometry Proteomics Bottom-up Middle-down 


  1. 1.
    Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565. doi: 10.1038/150563a0 CrossRefGoogle Scholar
  2. 2.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36. doi: 10.1093/carcin/bgp220 CrossRefPubMedGoogle Scholar
  3. 3.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093. doi: 10.1126/science.1063443 CrossRefPubMedGoogle Scholar
  4. 4.
    van Attikum H, Gasser SM (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217. doi: 10.1016/j.tcb.2009.03.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508. doi: 10.1016/S1534-5807(03)00093-5 CrossRefPubMedGoogle Scholar
  6. 6.
    Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531. doi: 10.1038/emboj.2009.173 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS, Day DS, Gadel S, Gorchakov AA, Gu TT, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93. doi: 10.1038/Nsmb.1972 CrossRefPubMedGoogle Scholar
  8. 8.
    Sidoli S, Cheng L, Jensen ON (2012) Proteomics in chromatin biology and epigenetics: elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 75:3419–3433. doi: 10.1016/j.jprot.2011.12.029 CrossRefPubMedGoogle Scholar
  9. 9.
    Plazas-Mayorca MD, Zee BM, Young NL, Fingerman IM, LeRoy G, Briggs SD, Garcia BA (2009) One-pot shotgun quantitative mass spectrometry characterization of histones. J Proteome Res 8:5367–5374. doi: 10.1021/Pr900777e CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sidoli S, Yuan ZF, Lin S, Karch K, Wang X, Bhanu N, Arnaudo AM, Britton LM, Cao XJ, Gonzales-Cope M, Han Y, Liu S, Molden RC, Wein S, Afjehi-Sadat L, Garcia BA (2015) Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis. Proteomics 15:1459–1469. doi: 10.1002/pmic.201400483 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sidoli S, Schwammle V, Ruminowicz C, Hansen TA, Wu X, Helin K, Jensen ON (2014) Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 14:2200–2211. doi: 10.1002/pmic.201400084 CrossRefPubMedGoogle Scholar
  12. 12.
    Schwammle V, Aspalter CM, Sidoli S, Jensen ON (2014) Large-scale analysis of co-existing post-translational modifications on histone tails reveals global fine-structure of crosstalk. Mol Cell Proteomics 13(7):1855–1865. doi: 10.1074/mcp.O113.036335 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jung HR, Sidoli S, Haldbo S, Sprenger RR, Schwammle V, Pasini D, Helin K, Jensen ON (2013) Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem 85:8232–8239. doi: 10.1021/ac401299w CrossRefPubMedGoogle Scholar
  14. 14.
    Vonholt C, Brandt WF, Greyling HJ, Lindsey GG, Retief JD, Rodrigues JD, Schwager S, Sewell BT (1989) Isolation and characterization of histones. Methods Enzymol 170:431–523CrossRefGoogle Scholar
  15. 15.
    Zhang KL, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL (2002) Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306:259–269. doi: 10.1006/abio.2002.5719 CrossRefPubMedGoogle Scholar
  16. 16.
    Jufvas A, Stralfors P, Vener AV (2011) Histone variants and their post-translational modifications in primary human fat cells. PLoS One 6, ARTN e15960. doi: 10.1371/journal.pone.0015960 CrossRefGoogle Scholar
  17. 17.
    Bonaldi T, Imhof A, Regula JT (2004) A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics 4:1382–1396. doi: 10.1002/pmic.200300743 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao XL, Sidoli S, Wang LL, Wang WJ, Guo L, Jensen ON, Zheng L (2014) Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury. J Proteome Res 13:2175–2186. doi: 10.1021/Pr500040a CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Epigenetics Program, Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations