Advertisement

Bioinformatics pp 433-460 | Cite as

Detecting and Analyzing Genetic Recombination Using RDP4

  • Darren P. MartinEmail author
  • Ben Murrell
  • Arjun Khoosal
  • Brejnev Muhire
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1525)

Abstract

Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

Key words

Recombination Gene conversion Breakpoints Phylogenetic trees RDP4 

References

  1. 1.
    Martin DP, Lemey P, Posada D (2011) Analysing recombination in nucleotide sequences. Mol Ecol Resour 11:943–955CrossRefPubMedGoogle Scholar
  2. 2.
    Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262CrossRefPubMedGoogle Scholar
  3. 3.
    Muhire B, Martin DP, Brown JK et al (2013) A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 158:1411–1424CrossRefPubMedGoogle Scholar
  4. 4.
    Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563CrossRefPubMedGoogle Scholar
  5. 5.
    Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225CrossRefPubMedGoogle Scholar
  6. 6.
    Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129PubMedGoogle Scholar
  7. 7.
    Schultz A-K, Zhang M, Leitner T et al (2006) A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. BMC Bioinformatics 7:265CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lole KS, Bollinger RC, Paranjape RS et al (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160PubMedPubMedCentralGoogle Scholar
  9. 9.
    Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757–13762CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102CrossRefPubMedGoogle Scholar
  11. 11.
    Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582CrossRefPubMedGoogle Scholar
  13. 13.
    Holmes EC, Worobey M, Rambaut A (1999) Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16:405–409CrossRefPubMedGoogle Scholar
  14. 14.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (version 3.2). Cladistics 5:163–166CrossRefGoogle Scholar
  16. 16.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  17. 17.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  18. 18.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  19. 19.
    Weiller GF (1998) Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 15:326–335CrossRefPubMedGoogle Scholar
  20. 20.
    McGuire G, Wright F (2000) TOPAL 2.0: improved detection of mosaic sequences within multiple alignments. Bioinformatics 16:130–134CrossRefPubMedGoogle Scholar
  21. 21.
    Simon-Loriere E, Galetto R, Hamoudi M et al (2009) Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog 5:e1000418CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Darren P. Martin
    • 1
    Email author
  • Ben Murrell
    • 2
  • Arjun Khoosal
    • 1
  • Brejnev Muhire
    • 1
  1. 1.Institute of Infectious Diseases and Molecular Medicine, Computational Biology GroupUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations