Advertisement

Bioinformatics pp 403-415 | Cite as

Information Visualization for Biological Data

  • Tobias Czauderna
  • Falk Schreiber
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1526)

Abstract

Visualization is a powerful method to present and explore a large amount of data. It is increasingly important in the life sciences and is used for analyzing different types of biological data, such as structural information, high-throughput data, and biochemical networks. This chapter gives a brief introduction to visualization methods for bioinformatics, presents two commonly used techniques in detail, and discusses a graphical standard for biological networks and cellular processes.

Key words

Visualization Data exploration Heat-maps Force-based layout Graph drawing Systems Biology Graphical Notation 

References

  1. 1.
    Tsai CS (2003) Molecular graphics: visualization of biomolecules. In: Introduction to computational biochemistry. John Wiley & Sons, Inc., pp 53–71Google Scholar
  2. 2.
    Can T, Wang Y, Wang YF, Su J (2003) FPV: fast protein visualization using Java3D. Bioinformatics 19(8):913–922CrossRefPubMedGoogle Scholar
  3. 3.
    Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ (2011) Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27(23):3315–3316CrossRefPubMedGoogle Scholar
  4. 4.
    Helt GA, Lewis S, Loraine AE, Rubin GM (1998) BioViews: Java-based tools for genomic data visualization. Genome Res 8(3):291–305CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kerkhoven R, van Enckevort FHJ, Boekhorst J, Molenaar D, Siezen RJ (2004) Visualization for genomics: the microbial genome viewer. Bioinformatics 20(11):1812–1814CrossRefPubMedGoogle Scholar
  6. 6.
    Naquin D, d’Aubenton-Carafa Y, Thermes C, Silvain M (2014) CIRCUS: a package for Circos display of structural genome variations from paired-end and mate-pair sequencing data. BMC Bioinformatics 15:198CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Andrews DF (1972) Plots of high-dimensional data. Biometrics 29:125–136CrossRefGoogle Scholar
  8. 8.
    Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. Visualization, pp 361–370Google Scholar
  9. 9.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baehrecke EH, Dang N, Babaria K, Shneiderman B (2004) Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics 5(1):84CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hughes T, Hyun Y, Liberles D (2004) Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics 5(1):48CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rost U, Bornberg-Bauer E (2002) TreeWiz: interactive exploration of huge trees. Bioinformatics 18(1):109–114CrossRefPubMedGoogle Scholar
  13. 13.
    Huson D, Richter D, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8(1):460CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schreiber F (2002) High quality visualization of biochemical pathways in BioPath. In Silico Biol 2(2):59–73PubMedGoogle Scholar
  15. 15.
    Sirava M, Schäfer T, Eiglsperger M, Kaufmann M, Kohlbacher O, Bornberg-Bauer E, Lenhof HP (2002) BioMiner—modeling, analyzing, and visualizing biochemical pathways and networks. Bioinformatics 18(suppl 2):S219–S230Google Scholar
  16. 16.
    Kerren A, Schreiber F (2014) Network visualization for integrative bioinformatics. In: Hofestädt R, Chen M (eds) Approaches in Integrative Bioinformatics: towards the virtual cell. Springer, New York, pp 173–202CrossRefGoogle Scholar
  17. 17.
    Molw PDB Viewer 4.0Google Scholar
  18. 18.
    Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Forster M, Pick A, Raitner M, Schreiber F, Brandenburg FJ (2002) The system architecture of the BioPath system. In Silico Biol 2(3):415–426PubMedGoogle Scholar
  20. 20.
    Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA et al (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68CrossRefPubMedGoogle Scholar
  21. 21.
    Duggan D, Bittner B, Chen Y, Meltzer P, Trent J (1999) Expression profiling using cDNA microarrays. Nat Genet 21(Suppl 1):11–19Google Scholar
  22. 22.
    MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl 1):526–532CrossRefPubMedGoogle Scholar
  23. 23.
    Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646CrossRefPubMedGoogle Scholar
  24. 24.
  25. 25.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Genc B, Dogrusöz U (2003) A constrained, force-directed layout algorithm for biological pathways. In: Liotta G (ed) Proc. International Symposium on Graph Drawing (GD'03), vol 2912. Springer LNCS, Heidelberg, pp 314–319Google Scholar
  27. 27.
    Klukas C, Schreiber F, Schwöbbermeyer H (2006) Coordinated perspectives and enhanced force-directed layout for the analysis of network motifs. In: Misue K, Sugiyama K, Tanaka J (eds) Proc. Asia-Pacific symposium on information visualization (APVis'06), CRPIT 60, pp 39–48Google Scholar
  28. 28.
    Friedrich C, Schreiber F (2003) Visualization and navigation methods for typed protein-protein interaction networks. Appl Bioinformatics 2(3):19–24Google Scholar
  29. 29.
    Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7:219CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Le Novère N, Hucka M, Mi HY, Moodie S, Schreiber F, Sorokin A et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735–741CrossRefPubMedGoogle Scholar
  31. 31.
    Moodie S, Le Novère N, Sorokin A, Mi H, Schreiber F (2009) The Systems Biology Graphical Notation: process description language level 1. Nature Precedings 2009.3721Google Scholar
  32. 32.
    Le Novère N, Moodie S, Sorokin A, Schreiber F, Mi H (2009) Systems biology graphical notation: entity relationship language level 1. Nature Precedings 2009.3719Google Scholar
  33. 33.
    Huaiyu M, Schreiber F, Le Novère N, Moodie S, Sorokin A (2009) Systems biology graphical notation: activity flow language level 1. Nature Precedings 2009.3724Google Scholar
  34. 34.
    Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(1):D472–D477CrossRefPubMedGoogle Scholar
  35. 35.
    Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41(1):D377–D386CrossRefPubMedGoogle Scholar
  36. 36.
    Chelliah V, Laibe C, Le Novère N (2013) BioModels database: a repository of mathematical models of biological processes. Methods Mol Biol 1021:189–199CrossRefPubMedGoogle Scholar
  37. 37.
    Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T et al (2013) Large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:116CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstück M, Scholz U, Weise S (2012) MetaCrop 2.0: managing and exploring information about crop plant metabolism. Nucleic Acids Res 40(1):D1173–D1177CrossRefPubMedGoogle Scholar
  39. 39.
    Junker A, Hartmann A, Schreiber F, Bäumlein H (2010) An engineer’s view on regulation of seed development. Trends Plant Sci 15(6):303–307CrossRefPubMedGoogle Scholar
  40. 40.
    Czauderna T, Klukas C, Schreiber F (2010) Editing, validating, and translating of SBGN maps. Bioinformatics 26(18):2340–2341CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bar-Joseph Z, Gifford DK, Jaakkola TS (2001) Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17(Suppl 1):S22–S29CrossRefPubMedGoogle Scholar
  42. 42.
    Biedl T, Brejová B, Demaine ED, Hamel AM, Vinař T (2001) Optimal arrangement of leaves in the tree representing hierarchical clustering of gene expression data. Technical report 2001–14, Dept. of Computer Science, University of WaterlooGoogle Scholar
  43. 43.
    Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  44. 44.
    Eades P (1984) A heuristic for graph drawing. Congr Numer 42:149–160Google Scholar
  45. 45.
    Fruchterman T, Reingold E (1991) Graph drawing by force-directed placement. Software Pract Exper 21:1129–1164CrossRefGoogle Scholar
  46. 46.
    Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15CrossRefGoogle Scholar
  47. 47.
    Sugiyama K, Misue K (1995) Graph drawing by magnetic spring model. J Vis Lang Comput 6(3):217–231CrossRefGoogle Scholar
  48. 48.
    Madadhain J, Fisher D, Smyth P, White S, Boey YB (2005) Analysis and visualization of network data using JUNG. J Stat Softw 10:1–35Google Scholar
  49. 49.
    Bachmaier C, Brandenburg FJ, Forster M, Holleis P, Raitner M (2005) Gravisto: graph visualization toolkit. In: Pach J (ed) Proc. International Symposium on Graph Drawing (GD'04), vol 3383. Springer LNCS, Heidelberg, pp 502–503Google Scholar
  50. 50.
    Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6(1):139CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Junker A, Sorokin A, Czauderna T, Schreiber F, Mazein A (2012) Wiring diagrams in biology: towards the standardized representation of biological information. Trends Biotechnol 30(11):555–557CrossRefPubMedGoogle Scholar
  52. 52.
    Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F (2012) Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation. Nat Protoc 7:579–593CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations