Inferring Function from Homology

  • Tom C. Giles
  • Richard D. EmesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1526)


Recent technological advances in sequencing and high-throughput DNA cloning have resulted in the generation of vast quantities of biological sequence data. Ideally the functions of individual genes and proteins predicted by these methods should be assessed experimentally within the context of a defined hypothesis. However, if no hypothesis is known a priori, or the number of sequences to be assessed is large, bioinformatics techniques may be useful in predicting function.

This chapter proposes a pipeline of freely available Web-based tools to analyze protein-coding DNA and peptide sequences of unknown function. Accumulated information obtained during each step of the pipeline is used to build a testable hypothesis of function.

The following methods are described in detail:
  1. 1.

    Annotation of gene function through Protein domain detection (SMART and Pfam).

  2. 2.

    Sequence similarity methods for homolog detection (BLAST and DELTA-BLAST).

  3. 3.

    Comparing sequences to whole genome data.


Key words

Comparative genomics Homology Orthology Paralogy BLAST Protein domain Pfam SMART Ensembl UCSC genome browser 


  1. 1.
    Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry? Science 214(4517):149–159CrossRefPubMedGoogle Scholar
  2. 2.
    Pearson WR, Sierk ML (2005) The limits of protein sequence comparison? Curr Opin Struct Biol 15(3):254–260CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fitch WM (2000) Homology a personal view on some of the problems. Trends Genet 16(5):227–231CrossRefPubMedGoogle Scholar
  4. 4.
    Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278(5338):609–614CrossRefPubMedGoogle Scholar
  5. 5.
    Sonnhammer EL, Koonin EV (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18(12):619–620CrossRefPubMedGoogle Scholar
  6. 6.
    Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272(1):59–73CrossRefPubMedGoogle Scholar
  7. 7.
    Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2(7):E206CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22(1):12–13CrossRefPubMedGoogle Scholar
  10. 10.
    Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31:45–71CrossRefPubMedGoogle Scholar
  11. 11.
    Ponting CP (2001) Issues in predicting protein function from sequence. Brief Bioinform 2(1):19–29CrossRefPubMedGoogle Scholar
  12. 12.
    Ponting CP, Dickens NJ (2001) Genome cartography through domain annotation. Genome Biol 2(7), Comment 2006Google Scholar
  13. 13.
    Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S et al (2013) Ensembl 2013. Nucleic Acids Res 41(Database issue):D48–D55CrossRefPubMedGoogle Scholar
  14. 14.
    Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T et al (2002) The Ensembl genome database project. Nucleic Acids Res 30(1):38–41CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B et al (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41(Database issue):D64–D69CrossRefPubMedGoogle Scholar
  16. 16.
    Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30(1):281–283CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–D352CrossRefPubMedGoogle Scholar
  18. 18.
    Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29(1):37–40CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer EL (1999) Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27(1):260–262CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230CrossRefPubMedGoogle Scholar
  22. 22.
    Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(Database issue):D302–D305CrossRefPubMedGoogle Scholar
  23. 23.
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–5864CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85(8):2444–2448CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  26. 26.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763CrossRefPubMedGoogle Scholar
  28. 28.
    Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521CrossRefPubMedGoogle Scholar
  29. 29.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  30. 30.
    Ellsworth RE, Jamison DC, Touchman JW, Chissoe SL, Braden Maduro VV, Bouffard GG, Dietrich NL, Beckstrom-Sternberg SM, Iyer LM, Weintraub LA et al (2000) Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Proc Natl Acad Sci U S A 97(3):1172–1177CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet 12(7):701–709CrossRefPubMedGoogle Scholar
  32. 32.
    Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28(1):231–234CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26(1):320–322CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database issue):D247–D251CrossRefPubMedGoogle Scholar
  35. 35.
    Henikoff S, Henikoff JG (1993) Performance evaluation of amino acid substitution matrices. Proteins 17(1):49–61CrossRefPubMedGoogle Scholar
  36. 36.
    Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197CrossRefPubMedGoogle Scholar
  38. 38.
    Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36(Database issue):D13–D21PubMedGoogle Scholar
  39. 39.
    Pearson WR (2014) BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol Biol 1079:75–101CrossRefPubMedGoogle Scholar
  40. 40.
    Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK (2009) PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res 37(3):815–824CrossRefPubMedGoogle Scholar
  41. 41.
    Altschul SF, Koonin EV (1998) Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem Sci 23(11):444–447CrossRefPubMedGoogle Scholar
  42. 42.
    Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jones DT, Swindells MB (2002) Getting the most from PSI-BLAST. Trends Biochem Sci 27(3):161–164CrossRefPubMedGoogle Scholar
  44. 44.
    Korf I (2003) Serial BLAST searching. Bioinformatics 19(12):1492–1496CrossRefPubMedGoogle Scholar
  45. 45.
    Altschul SF, Bundschuh R, Olsen R, Hwa T (2001) The estimation of statistical parameters for local alignment score distributions. Nucleic Acids Res 29(2):351–361CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wootton JC, Federhen S (1996) Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266:554–571CrossRefPubMedGoogle Scholar
  47. 47.
    Altschul SF, Gish W (1996) Local alignment statistics. Methods Enzymol 266:460–480CrossRefPubMedGoogle Scholar
  48. 48.
    Henikoff S (1996) Scores for sequence searches and alignments. Curr Opin Struct Biol 6(3):353–360CrossRefPubMedGoogle Scholar
  49. 49.
    Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sierk ML, Pearson WR (2004) Sensitivity and selectivity in protein structure comparison. Protein Sci 13(3):773–785CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wass MN, Barton G, Sternberg MJ (2012) CombFunc: predicting protein function using heterogeneous data sources. Nucleic Acids Res 40(Web Server issue):W466–W470CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Minneci F, Piovesan D, Cozzetto D, Jones DT (2013) FFPred 2.0: improved homology-independent prediction of gene ontology terms for eukaryotic protein sequences. PLoS One 8(5):e63754CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Henikoff S, Pietrokovski S, Henikoff JG (1998) Superior performance in protein homology detection with the Blocks Database servers. Nucleic Acids Res 26(1):309–312CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (2000) Blocks-based methods for detecting protein homology. Electrophoresis 21(9):1700–1706CrossRefPubMedGoogle Scholar
  56. 56.
    Schaffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15(12):1000–1011CrossRefPubMedGoogle Scholar
  57. 57.
    Pietrokovski S (1996) Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 24(19):3836–3845CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sadreyev R, Grishin N (2003) COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. J Mol Biol 326(1):317–336CrossRefPubMedGoogle Scholar
  59. 59.
    Sadreyev RI, Grishin NV (2004) Quality of alignment comparison by COMPASS improves with inclusion of diverse confident homologs. Bioinformatics 20(6):818–828CrossRefPubMedGoogle Scholar
  60. 60.
    Sadreyev RI, Tang M, Kim BH, Grishin NV (2007) COMPASS server for remote homology inference. Nucleic Acids Res 35(Web Server issue):W653–W658CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sadreyev RI, Tang M, Kim BH, Grishin NV (2009) COMPASS server for homology detection: improved statistical accuracy, speed and functionality. Nucleic Acids Res 37(Web Server issue):W90–W94CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hildebrand A, Remmert M, Biegert A, Soding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77(Suppl 9):128–132CrossRefPubMedGoogle Scholar
  64. 64.
    Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD et al (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35(Database issue):D237–D240CrossRefPubMedGoogle Scholar
  67. 67.
    Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 31(1):28–33CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Veterinary Medicine and ScienceUniversity of NottinghamLeicestershireUK
  2. 2.Advanced Data Analysis CentreUniversity of NottinghamLeicestershireUK

Personalised recommendations