Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1519)

Abstract

The p21-family members of Rho GTPases are important for the control of actin cytoskeleton dynamics, and are critical regulators of phagocytosis. The three-dimensional structure of phagosomes and the highly compartmentalized nature of the signaling mechanisms during phagocytosis require high-resolution imaging using ratiometric biosensors to decipher Rho GTPase activities regulating phagosome formation and function. Here we describe methods for the expression and ratiometric imaging of FRET-based Rho GTPase biosensors in macrophages during phagocytosis. As an example, we show Cdc42 activity at the phagosome over Z-serial planes. In addition, we demonstrate the usage of a new, fast, and user-friendly deconvolution package that delivers significant improvements in the attainable details of Rho GTPase activity in phagosome structures.

Key words

Macrophages Phagosome Ratiometric imaging FRET Biosensors Z-stack Deconvolution 

Notes

Acknowledgements

This work was supported by National Institutes of Health grants T32GM007491 to VM, GM071828 to DC, and GM093121 to LH.

References

  1. 1.
    Rougerie P, Miskolci V, Cox D (2013) Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239CrossRefPubMedGoogle Scholar
  2. 2.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514CrossRefPubMedGoogle Scholar
  3. 3.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846CrossRefPubMedGoogle Scholar
  4. 4.
    Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269CrossRefPubMedGoogle Scholar
  5. 5.
    Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701CrossRefPubMedGoogle Scholar
  7. 7.
    Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721CrossRefPubMedGoogle Scholar
  8. 8.
    Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jennings RT, Knaus UG (2014) Rho family and Rap GTPase activation assays. Methods Mol Biol 1124:79–88CrossRefPubMedGoogle Scholar
  10. 10.
    Pertz O (2010) Spatio-temporal Rho GTPase signaling—where are we now? J Cell Sci 123:1841–1850CrossRefPubMedGoogle Scholar
  11. 11.
    Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15:3509–3519CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9, e96469CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16:574–586CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol. Chapter 14, Unit 14 11 11–26Google Scholar
  16. 16.
    An W, Telesnitsky A (2002) Effects of varying sequence similarity on the frequency of repeat deletion during reverse transcription of a human immunodeficiency virus type 1 vector. J Virol 76:7897–7902CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Delviks KA, Pathak VK (1999) Effect of distance between homologous sequences and 3' homology on the frequency of retroviral reverse transcriptase template switching. J Virol 73:7923–7932PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK et al (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:876–886CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5, e10611CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ramezani A, Hawley TS, Hawley RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469CrossRefPubMedGoogle Scholar
  21. 21.
    Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392–3398PubMedGoogle Scholar
  22. 22.
    Loew R, Heinz N, Hampf M, Bujard H, Gossen M (2010) Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 10:81CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou X, Vink M, Klaver B, Berkhout B, Das AT (2006) Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13:1382–1390CrossRefPubMedGoogle Scholar
  24. 24.
    Khader H, Solodushko V, Al-Mehdi AB, Audia J, Fouty B (2013) Overlap of doxycycline fluorescence with that of the redox-sensitive intracellular reporter roGFP. J Fluoresc 24:305–311CrossRefPubMedGoogle Scholar
  25. 25.
    Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shen F, Hodgson L, Rabinovich A, Pertz O, Hahn K, Price JH (2006) Functional proteometrics for cell migration. Cytometry A 69:563–572CrossRefPubMedGoogle Scholar
  27. 27.
    Danuser G (1999) Photogrammetric calibration of a stereo light microscope. J Microsc 193:62–83CrossRefPubMedGoogle Scholar
  28. 28.
    Bruce MA, Butte MJ (2013) Real-time GPU-based 3D deconvolution. Opt Express 21:4766–4773CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departments of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Gruss-Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxUSA
  3. 3.Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations