Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis

  • Veronika Miskolci
  • Louis HodgsonEmail author
  • Dianne CoxEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1519)


The p21-family members of Rho GTPases are important for the control of actin cytoskeleton dynamics, and are critical regulators of phagocytosis. The three-dimensional structure of phagosomes and the highly compartmentalized nature of the signaling mechanisms during phagocytosis require high-resolution imaging using ratiometric biosensors to decipher Rho GTPase activities regulating phagosome formation and function. Here we describe methods for the expression and ratiometric imaging of FRET-based Rho GTPase biosensors in macrophages during phagocytosis. As an example, we show Cdc42 activity at the phagosome over Z-serial planes. In addition, we demonstrate the usage of a new, fast, and user-friendly deconvolution package that delivers significant improvements in the attainable details of Rho GTPase activity in phagosome structures.

Key words

Macrophages Phagosome Ratiometric imaging FRET Biosensors Z-stack Deconvolution 



This work was supported by National Institutes of Health grants T32GM007491 to VM, GM071828 to DC, and GM093121 to LH.


  1. 1.
    Rougerie P, Miskolci V, Cox D (2013) Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239CrossRefPubMedGoogle Scholar
  2. 2.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514CrossRefPubMedGoogle Scholar
  3. 3.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846CrossRefPubMedGoogle Scholar
  4. 4.
    Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269CrossRefPubMedGoogle Scholar
  5. 5.
    Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701CrossRefPubMedGoogle Scholar
  7. 7.
    Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721CrossRefPubMedGoogle Scholar
  8. 8.
    Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jennings RT, Knaus UG (2014) Rho family and Rap GTPase activation assays. Methods Mol Biol 1124:79–88CrossRefPubMedGoogle Scholar
  10. 10.
    Pertz O (2010) Spatio-temporal Rho GTPase signaling—where are we now? J Cell Sci 123:1841–1850CrossRefPubMedGoogle Scholar
  11. 11.
    Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15:3509–3519CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9, e96469CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16:574–586CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol. Chapter 14, Unit 14 11 11–26Google Scholar
  16. 16.
    An W, Telesnitsky A (2002) Effects of varying sequence similarity on the frequency of repeat deletion during reverse transcription of a human immunodeficiency virus type 1 vector. J Virol 76:7897–7902CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Delviks KA, Pathak VK (1999) Effect of distance between homologous sequences and 3' homology on the frequency of retroviral reverse transcriptase template switching. J Virol 73:7923–7932PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK et al (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:876–886CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5, e10611CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ramezani A, Hawley TS, Hawley RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469CrossRefPubMedGoogle Scholar
  21. 21.
    Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392–3398PubMedGoogle Scholar
  22. 22.
    Loew R, Heinz N, Hampf M, Bujard H, Gossen M (2010) Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 10:81CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou X, Vink M, Klaver B, Berkhout B, Das AT (2006) Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13:1382–1390CrossRefPubMedGoogle Scholar
  24. 24.
    Khader H, Solodushko V, Al-Mehdi AB, Audia J, Fouty B (2013) Overlap of doxycycline fluorescence with that of the redox-sensitive intracellular reporter roGFP. J Fluoresc 24:305–311CrossRefPubMedGoogle Scholar
  25. 25.
    Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shen F, Hodgson L, Rabinovich A, Pertz O, Hahn K, Price JH (2006) Functional proteometrics for cell migration. Cytometry A 69:563–572CrossRefPubMedGoogle Scholar
  27. 27.
    Danuser G (1999) Photogrammetric calibration of a stereo light microscope. J Microsc 193:62–83CrossRefPubMedGoogle Scholar
  28. 28.
    Bruce MA, Butte MJ (2013) Real-time GPU-based 3D deconvolution. Opt Express 21:4766–4773CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departments of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Gruss-Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxUSA
  3. 3.Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations