A Protocol for Measuring Mitotic Chromosome Condensation Quantitatively in Fission Yeast Cells

  • Christoph Schiklenk
  • Boryana Petrova
  • Christian H. Haering
Part of the Methods in Molecular Biology book series (MIMB, volume 1515)


Even though the formation of compact cylindrical chromosomes early during mitosis or meiosis is a prerequisite for the successful segregation of eukaryotic genomes, little is known about the molecular basis of this chromosome condensation process. Here, we describe in detail the protocol for a quantitative chromosome condensation assay in fission yeast cells, which is based on precise time-resolved measurements of the distances between two fluorescently labeled positions on the same chromosome. In combination with an automated computational analysis pipeline, this assay enables the study of various candidate proteins for their roles in regulating genome topology during cell divisions.

Key words

Chromosome segregation Genome architecture Mitosis Live cell microscopy Schizosaccharomyces pombe 



We are grateful to Kota Miura (CMCI, EMBL Heidelberg) for advice and developing the Fiji software plugin for data analysis and to the EMBL Advanced Light Microscopy Facility (ALMF) for assistance. Work in the authors’ laboratory is funded by EMBL and grants HA5853/1-2 and HA5853/2-1 from the German Research Foundation.


  1. 1.
    Naumova N, Imakaev M, Fudenberg G et al (2013) Organization of the mitotic chromosome. Science (New York, NY) 342:948–953CrossRefGoogle Scholar
  2. 2.
    Vas ACJ, Andrews CA, Kirkland Matesky K et al (2007) In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. Mol Biol Cell 18:557–568CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Petrova B, Dehler S, Kruitwagen T et al (2013) Quantitative analysis of chromosome condensation in fission yeast. Mol Cell Biol 33:984–998CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12:521–534CrossRefPubMedGoogle Scholar
  5. 5.
    Mizuguchi T, Fudenberg G, Mehta S et al (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–435CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zofall M, Grewal SIS (2006) RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol 71:487–496CrossRefPubMedGoogle Scholar
  7. 7.
    Lassadi I, Bystricky K (2011) Tracking of single and multiple genomic loci in living yeast cells. Methods Mol Biol (Clifton, NJ) 745:499–522CrossRefGoogle Scholar
  8. 8.
    Lewis M, Chang G, Horton NC et al (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science (New York, NY) 271:1247–1254CrossRefGoogle Scholar
  9. 9.
    Orth P, Schnappinger D, Hillen W et al (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7:215–219CrossRefPubMedGoogle Scholar
  10. 10.
    Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700CrossRefPubMedGoogle Scholar
  11. 11.
    Sakuno T, Tada K, Watanabe Y (2009) Kinetochore geometry defined by cohesion within the centromere. Nature 458:852–858CrossRefPubMedGoogle Scholar
  12. 12.
    Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11:1227–1239CrossRefPubMedGoogle Scholar
  13. 13.
    Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lassadi I, Kamgoué A, Goiffon I et al (2015) Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLoS Comput Biol 11, e1004306CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Saad H, Gallardo F, Dalvai M et al (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet 10, e1004187CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Luche DD, Forsburg SL (2009) Cell-cycle synchrony for analysis of S pombe DNA replication. Methods Mol Biol (Clifton, NJ) 521:437–448CrossRefGoogle Scholar
  18. 18.
    Petrova B (2012) In vivo analysis of chromosome condensation in Schizosaccharomyces pombe (PhD Thesis, University of Heidelberg)Google Scholar
  19. 19.
    Mora-Bermúdez F, Ellenberg J (2007) Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods (San Diego, CA) 41:158–167CrossRefGoogle Scholar
  20. 20.
    Hediger F, Taddei A, Neumann FR et al (2004) Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 375:345–365CrossRefPubMedGoogle Scholar
  21. 21.
    Llères D, James J, Swift S et al (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187:481–496CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science (New York, NY) 343:77–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christoph Schiklenk
    • 1
  • Boryana Petrova
    • 1
  • Christian H. Haering
    • 1
  1. 1.Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)69117 HeidelbergGermany

Personalised recommendations