Advertisement

Characterizing Glycoproteins by Mass Spectrometry in Campylobacter jejuni

  • Nichollas E. ScottEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1512)

Abstract

The glycosylation systems of Campylobacter jejuni (C. jejuni) are considered archetypal examples of both N- and O-linked glycosylations in the field of bacterial glycosylation. The discovery and characterization of these systems both have revealed important biological insight into C. jejuni and have led to the refinement and enhancement of methodologies to characterize bacterial glycosylation. In general, mass spectrometry-based characterization has become the preferred methodology for the study of C. jejuni glycosylation because of its speed, sensitivity, and ability to enable both qualitative and quantitative assessments of glycosylation events. In these experiments the generation of insightful data requires the careful selection of experimental approaches and mass spectrometry (MS) instrumentation. As such, it is essential to have a deep understanding of the technologies and approaches used for characterization of glycosylation events. Here we describe protocols for the initial characterization of C. jejuni glycoproteins using protein-/peptide-centric approaches and discuss considerations that can enhance the generation of insightful data.

Key words

Glycoprotein Campylobacter jejuni Mass spectrometry 

Notes

Acknowledgments

I would like to thank Beverley and Meowcroft Phillips for their tireless support and proofreading of this manuscript. N.E.S. is supported by a National Health and Medical Research Council (NHMRC) of Australia Overseas (Biomedical) Early Career Fellowship (APP1037373) and a Michael Smith Foundation for Health Research Trainee Postdoctoral Fellowship (award # 5363).

References

  1. 1.
    Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56RCrossRefPubMedGoogle Scholar
  2. 2.
    Eichler J, Adams MW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69(3):393–425CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in bacteria and Archaea. Curr Opin Struct Biol 18(5):544–550. doi: 10.1016/j.sbi.2008.06.010, S0959-440X(08)00098-5 [pii]CrossRefPubMedGoogle Scholar
  4. 4.
    Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3(3):225–237CrossRefPubMedGoogle Scholar
  5. 5.
    Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8(11):765–778. doi: 10.1038/nrmicro2383 CrossRefPubMedGoogle Scholar
  6. 6.
    Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288(10):6912–6920. doi: 10.1074/jbc.R112.417857 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iwashkiw JA, Vozza NF, Kinsella RL et al (2013) Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol Microbiol 89(1):14–28. doi: 10.1111/mmi.12265 CrossRefPubMedGoogle Scholar
  8. 8.
    Iwashkiw JA, Seper A, Weber BS et al (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8(6):e1002758. doi: 10.1371/journal.ppat.1002758 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lithgow KV, Scott NE, Iwashkiw JA et al (2014) A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 92(1):116–37CrossRefPubMedGoogle Scholar
  10. 10.
    Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70(4):2242–2244CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Howard SL, Jagannathan A, Soo EC et al (2009) Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77(6):2544–2556CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pearson JS, Giogha C, Ong SY et al (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501(7466):247–251. doi: 10.1038/nature12524 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5(8):a013359. doi: 10.1101/cshperspect.a013359 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jensen PH, Kolarich D, Packer NH (2010) Mucin-type O-glycosylation--putting the pieces together. FEBS J 277(1):81–94. doi: 10.1111/j.1742-4658.2009.07429.x CrossRefPubMedGoogle Scholar
  15. 15.
    Young NM, Brisson JR, Kelly J et al (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277(45):42530–42539CrossRefPubMedGoogle Scholar
  16. 16.
    Morrison MJ, Imperiali B (2014) The renaissance of bacillosamine and its derivatives: pathway characterization and implications in pathogenicity. Biochemistry 53(4):624–638. doi: 10.1021/bi401546r CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scott NE, Kinsella RL, Edwards AV et al (2014) Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Mol Cell Proteomics. doi: 10.1074/mcp.M114.038315 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nothaft H, Scott NE, Vinogradov E et al (2012) Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 11(11):1203–1219. doi: 10.1074/mcp.M112.021519 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Deeb SJ, Cox J, Schmidt-Supprian M et al (2014) N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes. Mol Cell Proteomics 13(1):240–251. doi: 10.1074/mcp.M113.033977 CrossRefPubMedGoogle Scholar
  20. 20.
    Anugraham M, Jacob F, Nixdorf S et al (2014) Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol Cell Proteomics 13(9):2213–2232. doi: 10.1074/mcp.M113.037085 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang Z, Halim A, Narimatsu Y et al (2014) The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy. Mol Cell Proteomics 13(12):3224–3235. doi: 10.1074/mcp.M114.041541 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vester-Christensen MB, Halim A, Joshi HJ et al (2013) Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci U S A 110(52):21018–21023. doi: 10.1073/pnas.1313446110 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parker BL, Thaysen-Andersen M, Solis N et al (2013) Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res 12(12):5791–5800. doi: 10.1021/pr400783j CrossRefPubMedGoogle Scholar
  24. 24.
    Schirm M, Schoenhofen IC, Logan SM et al (2005) Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal Chem 77(23):7774–7782CrossRefPubMedGoogle Scholar
  25. 25.
    Thibault P, Logan SM, Kelly JF et al (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276(37):34862–34870CrossRefPubMedGoogle Scholar
  26. 26.
    McNally DJ, Aubrey AJ, Hui JP et al (2007) Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J Biol Chem 282(19):14463–75CrossRefPubMedGoogle Scholar
  27. 27.
    Logan SM, Kelly JF, Thibault P et al (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46(2):587–597CrossRefPubMedGoogle Scholar
  28. 28.
    Goon S, Kelly JF, Logan SM et al (2003) Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50(2):659–671CrossRefPubMedGoogle Scholar
  29. 29.
    Ewing CP, Andreishcheva E, Guerry P (2009) Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J Bacteriol 191(22):7086–7093CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guerry P, Ewing CP, Schirm M et al (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60(2):299–311CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Karlyshev AV, Everest P, Linton D et al (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiol 150(Pt 6):1957–1964CrossRefGoogle Scholar
  32. 32.
    Logan SM, Trust TJ, Guerry P (1989) Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol 171(6):3031–3038CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Doig P, Kinsella N, Guerry P et al (1996) Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19(2):379–387CrossRefPubMedGoogle Scholar
  34. 34.
    Champion OL, Gaunt MW, Gundogdu O et al (2005) Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc Natl Acad Sci U S A 102(44):16043–16048. doi: 10.1073/pnas.0503252102 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Parkhill J, Wren BW, Mungall K et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668. doi: 10.1038/35001088 CrossRefPubMedGoogle Scholar
  36. 36.
    Schoenhofen IC, McNally DJ, Brisson JR et al (2006) Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16(9):8C–14C. doi: 10.1093/glycob/cwl010 CrossRefPubMedGoogle Scholar
  37. 37.
    Chou WK, Dick S, Wakarchuk WW et al (2005) Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J Biol Chem 280(43):35922–35928CrossRefPubMedGoogle Scholar
  38. 38.
    Schoenhofen IC, McNally DJ, Vinogradov E et al (2006) Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J Biol Chem 281(2):723–732. doi: 10.1074/jbc.M511021200 CrossRefPubMedGoogle Scholar
  39. 39.
    Schoenhofen IC, Vinogradov E, Whitfield DM et al (2009) The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19(7):715–725. doi: 10.1093/glycob/cwp039 CrossRefPubMedGoogle Scholar
  40. 40.
    Zampronio CG, Blackwell G, Penn CW et al (2011) Novel glycosylation sites localized in Campylobacter jejuni flagellin FlaA by liquid chromatography electron capture dissociation tandem mass spectrometry. J Proteome Res. doi: 10.1021/pr101021c PubMedGoogle Scholar
  41. 41.
    Scott NE, Nothaft H, Edwards AV et al (2012) Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J Biol Chem 287(35):29384–29396. doi: 10.1074/jbc.M112.380212 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Scott NE, Parker BL, Connolly AM et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10(2):M000031–MCP000201. doi: 10.1074/mcp.M000031-MCP201 CrossRefPubMedGoogle Scholar
  43. 43.
    Scott NE, Marzook NB, Cain JA et al (2014) Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O. J Proteome Res 13(11):5136–5150. doi: 10.1021/pr5005554 CrossRefPubMedGoogle Scholar
  44. 44.
    Szymanski CM, Yao R, Ewing CP et al (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32(5):1022–1030CrossRefPubMedGoogle Scholar
  45. 45.
    Szymanski CM, Michael FS, Jarrell HC et al (2003) Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J Biol Chem 278(27):24509–24520CrossRefPubMedGoogle Scholar
  46. 46.
    Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793CrossRefPubMedGoogle Scholar
  47. 47.
    Nita-Lazar M, Wacker M, Schegg B et al (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15(4):361–367CrossRefPubMedGoogle Scholar
  48. 48.
    Kowarik M, Young NM, Numao S et al (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9)Google Scholar
  49. 49.
    Schwarz F, Lizak C, Fan YY et al (2011) Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 21(1):45–54. doi: 10.1093/glycob/cwq130 CrossRefPubMedGoogle Scholar
  50. 50.
    Ielmini MV, Feldman MF (2011) Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology 6:734–742CrossRefGoogle Scholar
  51. 51.
    Lizak C, Gerber S, Michaud G et al (2013) Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nat Commun 4:2627. doi: 10.1038/ncomms3627 CrossRefPubMedGoogle Scholar
  52. 52.
    Gerber S, Lizak C, Michaud G et al (2013) Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J Biol Chem 288(13):8849–8861. doi: 10.1074/jbc.M112.445940 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ulasi GN, Creese AJ, Hui SX et al (2015) Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: a multi-enzyme differential ion mobility mass spectrometry approach. Proteomics. doi: 10.1002/pmic.201400533 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Whitworth GE, Imperiali B (2015) Selective biochemical labeling of Campylobacter jejuni cell-surface glycoconjugates. Glycobiology. doi: 10.1093/glycob/cwv016 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ding W, Nothaft H, Szymanski CM et al (2009) Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 8(9):2170–2185. doi: 10.1074/mcp.M900088-MCP200, M900088-MCP200 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Linton D, Allan E, Karlyshev AV et al (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43(2):497–508CrossRefPubMedGoogle Scholar
  57. 57.
    Scott NE, Bogema DR, Connolly AM et al (2009) Mass spectrometric characterization of the surface-associated 42 kDa lipoprotein JlpA as a glycosylated antigen in strains of Campylobacter jejuni. J Proteome Res. doi: 10.1021/pr900544x PubMedGoogle Scholar
  58. 58.
    Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670CrossRefPubMedGoogle Scholar
  59. 59.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi: 10.1038/nprot.2007.261 CrossRefPubMedGoogle Scholar
  60. 60.
    Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904CrossRefPubMedGoogle Scholar
  61. 61.
    Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494. doi: 10.1038/nprot.2009.21, nprot.2009.21 [pii]CrossRefPubMedGoogle Scholar
  62. 62.
    Kollipara L, Zahedi RP (2013) Protein carbamylation: in vivo modification or in vitro artefact? Proteomics 13(6):941–944. doi: 10.1002/pmic.201200452 CrossRefPubMedGoogle Scholar
  63. 63.
    Dedvisitsakul P, Jacobsen S, Svensson B et al (2014) Glycopeptide enrichment using a combination of ZIC-HILIC and cotton wool for exploring the glycoproteome of wheat flour albumins. J Proteome Res. doi: 10.1021/pr401282r PubMedGoogle Scholar
  64. 64.
    Mysling S, Palmisano G, Hojrup P et al (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82(13):5598–5609. doi: 10.1021/ac100530w CrossRefPubMedGoogle Scholar
  65. 65.
    Cristobal A, Hennrich ML, Giansanti P et al (2012) In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis. Analyst 137(15):3541–3548. doi: 10.1039/c2an35445d CrossRefPubMedGoogle Scholar
  66. 66.
    Wisniewski JR, Gaugaz FZ (2015) Fast and sensitive total protein and peptide assays for proteomic analysis. Anal Chem 87(8):4110–4116. doi: 10.1021/ac504689z CrossRefPubMedGoogle Scholar
  67. 67.
    Means GE, Feeney RE (1990) Chemical modifications of proteins: history and applications. Bioconjug Chem 1(1):2–12CrossRefPubMedGoogle Scholar
  68. 68.
    Larsen MR, Hojrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4(2):107–119CrossRefPubMedGoogle Scholar
  69. 69.
    Saba J, Dutta S, Hemenway E et al (2012) Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int Jurnal of proteomics 2012:560391. doi: 10.1155/2012/560391 Google Scholar
  70. 70.
    Wu SW, Pu TH, Viner R et al (2014) Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem 86(11):5478–5486. doi: 10.1021/ac500945m CrossRefPubMedGoogle Scholar
  71. 71.
    Thaysen-Andersen M, Wilkinson BL, Payne RJ et al (2011) Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS. Electrophoresis 32(24):3536–3545. doi: 10.1002/elps.201100294 CrossRefPubMedGoogle Scholar
  72. 72.
    Good DM, Wirtala M, McAlister GC et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951CrossRefPubMedGoogle Scholar
  73. 73.
    Thingholm TE, Palmisano G, Kjeldsen F et al (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9(8):4045–4052. doi: 10.1021/pr100230q CrossRefPubMedGoogle Scholar
  74. 74.
    Schmidt A, Karas M, Dulcks T (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14(5):492–500, doi:S1044030503001284 [pii]CrossRefPubMedGoogle Scholar
  75. 75.
    Darula Z, Medzihradszky KF (2015) Carbamidomethylation side-reactions may lead to glycan misassignments in glycopeptide analysis. Anal Chem. doi: 10.1021/acs.analchem.5b01121 PubMedGoogle Scholar
  76. 76.
    Medzihradszky KF (2014) Noncovalent dimer formation in liquid chromatography-mass spectrometry analysis. Anal Chem 86(18):8906–8909. doi: 10.1021/ac502790j CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Darula Z, Medzihradszky KF (2014) Glycan side reaction may compromise ETD-based glycopeptide identification. J Am Soc Mass Spectrom 25(6):977–987. doi: 10.1007/s13361-014-0852-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Doherty InstituteThe University of MelbourneMelbourneAustralia

Personalised recommendations