Advertisement

Enrichment of the Plant Cytosolic Fraction

  • Jeemeng Lao
  • Andreia M. Smith-Moritz
  • Jennifer C. Mortimer
  • Joshua L. Heazlewood
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1511)

Abstract

The cytosol is at the core of cellular metabolism and contains many important metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. Despite the importance of this matrix, few attempts have sought to specifically enrich this compartment from plants. Although a variety of biochemical pathways and signaling cascades pass through the cytosol, much of the focus has usually been targeted at the reactions that occur within membrane-bound organelles of the plant cell. In this chapter, we outline a method for the enrichment of the cytosol from rice suspension cell cultures which includes sample preparation and enrichment as well as validation using immunoblotting and fluorescence-tagged proteins.

Key words

Cytosol Cytoplasm Rice Cell culture 

Notes

Acknowledgements

This work was supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract [DE-AC02-05CH11231] between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. JLH is supported by an Australian Research Council (ARC) Future Fellowship [FT130101165].

References

  1. 1.
    Ito J, Parsons HT, Heazlewood JL (2014) The Arabidopsis cytosolic proteome: the metabolic heart of the cell. Front Plant Sci 5:21CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246:R133–R151PubMedGoogle Scholar
  3. 3.
    Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261CrossRefGoogle Scholar
  4. 4.
    Millar AH, Taylor NL (2014) Subcellular proteomics-where cell biology meets protein chemistry. Front Plant Sci 5:55CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214CrossRefPubMedGoogle Scholar
  6. 6.
    Eubel H, Lee CP, Kuo J et al (2007) Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J 52:583–594CrossRefPubMedGoogle Scholar
  7. 7.
    Eubel H, Meyer EH, Taylor NL et al (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parsons HT, Christiansen K, Knierim B et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel targets involved in plant cell wall biosynthesis. Plant Physiol 159:12–26CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Parsons HT, González Fernández-Niño SM, Heazlewood JL (2014) In: Jorrín Novo JV, Komatsu S, Weckwerth W, Weinkoop S (eds) Plant proteomics: methods and protocols, vol 1072, 2nd edn. Humana Press, New York, pp 527–539CrossRefGoogle Scholar
  10. 10.
    Ito J, Batth TS, Petzold CJ et al (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J Proteome Res 10:1571–1582CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer EH, Millar AH (2008) In: Posch A (ed) 2D PAGE: Sample preparation and fractionation, vol 425. Humana Press, New York, pp 163–169CrossRefGoogle Scholar
  12. 12.
    Dounce AL, Witter RF, Monty KJ et al (1955) A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol 1:139–153CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schneider WC (1948) Intracellular distribution of enzymes III. The oxidation of octanoic acid by rat liver fractions. J Biol Chem 176:259–266PubMedGoogle Scholar
  14. 14.
    Day DA, Neuburger M, Douce R (1985) Biochemical-characterization of chlorophyll-free mitochondria from pea leaves. Aust J Plant Physiol 12:219–228CrossRefGoogle Scholar
  15. 15.
    Poincelo RP, Day PR (1974) Improved method for isolation of spinach chloroplast envelope membranes. Plant Physiol 54:780–783CrossRefGoogle Scholar
  16. 16.
    Widell S, Larsson C (1981) Separation of presumptive plasma-membranes from mitochondria by partition in an aqueous polymer 2-phase system. Physiol Plantarum 51:368–374CrossRefGoogle Scholar
  17. 17.
    Estavillo GM, Verhertbruggen Y, Scheller HV et al (2014) In: Jorrín-Novo JV, Komatsu S, Weckwerth W, Weinkoop S (eds) Plant proteomics: methods and protocols, vol 1072. Humana Press, New York, pp 453–467CrossRefGoogle Scholar
  18. 18.
    Oehrle NW, Sarma AD, Waters JK et al (2008) Proteomic analysis of soybean nodule cytosol. Phytochemistry 69:2426–2438CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  20. 20.
    Lao J, Sharma M, Sharma R et al (2015) Proteome profile of the endomembrane of developing coleoptiles from switchgrass (Panicum virgatum). Proteomics 15:2286–2290. doi: 10.1002/pmic.201400487 CrossRefPubMedGoogle Scholar
  21. 21.
    Parsons HT, Weinberg CS, Macdonald LJ et al (2013) Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis. PLoS One 8:e84669CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  23. 23.
    Lao J, Oikawa A, Bromley JR et al (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79:517–529CrossRefPubMedGoogle Scholar
  24. 24.
    González Fernández-Niño SM, Smith-Moritz AM, Chan LJG et al (2015) A standard flow liquid chromatography workflow for shotgun proteomics in bioenergy research. Front Bioeng Biotechnol 3:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jeemeng Lao
    • 1
  • Andreia M. Smith-Moritz
    • 1
  • Jennifer C. Mortimer
    • 1
  • Joshua L. Heazlewood
    • 1
    • 2
  1. 1.Joint BioEnergy Institute and Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.School of BioSciencesThe University of MelbourneMelbourneAustralia

Personalised recommendations