Enrichment of Golgi Membranes from Triticum aestivum (Wheat) Seedlings

  • Wei Zeng
  • Berit Ebert
  • Harriet T. Parsons
  • Carsten Rautengarten
  • Antony Bacic
  • Joshua L. HeazlewoodEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1511)


The Golgi apparatus is an essential component in the plant secretory pathway. The enrichment of Golgi membranes from plant tissue is fundamental to the study of this structurally complex organelle. The utilization of density centrifugation for the enrichment of Golgi membranes is still the most widely employed isolation technique. Generally, the procedure requires optimization depending on the plant tissue being employed. Here we provide a detailed enrichment procedure that has previously been used to characterize cell wall biosynthetic complexes from wheat seedlings. We also outline several downstream analyses procedures, including nucleoside diphosphatase assays, immunoblotting, and finally localization of putative Golgi proteins by fluorescent tags.

Key words

Golgi apparatus Density gradient centrifugation Subcellular localization Nucleoside diphosphatase 



This work was funded by grants from the Australia Research Council (ARC) to the ARC Centre of Excellence in Plant Cell Walls [CE110001007] and the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. JLH is supported by an ARC Future Fellowship [FT130101165].


  1. 1.
    Song W, Henquet MGL, Mentink RA et al (2011) N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74:1463–1474CrossRefPubMedGoogle Scholar
  2. 2.
    Van den Steen P, Rudd PM, Dwek RA et al (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208CrossRefPubMedGoogle Scholar
  3. 3.
    Dick G, Akslen-Hoel LK, Grondahl F et al (2012) Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 60:926–935CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  5. 5.
    Maccioni HJF, Quiroga R, Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585:1691–1698CrossRefPubMedGoogle Scholar
  6. 6.
    Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14:382–392CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wartosch L, Bright NA, Luzio JP (2015) Lysosomes. Curr Biol 25:R315–R316CrossRefPubMedGoogle Scholar
  8. 8.
    Mayinger P (2011) Signaling at the Golgi. Cold Spring Harb Perspect Biol 3:a005314CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dröscher A (1998) Camillo Golgi and the discovery of the Golgi apparatus. Histochem Cell Biol 109:425–430CrossRefPubMedGoogle Scholar
  10. 10.
    Golgi C (1898) Intorno alla struttura della cellula nervosa. Arch Ital Biol 30:60–71Google Scholar
  11. 11.
    Dalton AJ, Felix MD (1953) Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat 92:277–305CrossRefPubMedGoogle Scholar
  12. 12.
    Morré DJ, Mollenhauer HH (1974) In: Robards AW (ed) Dynamic aspects of plant infrastructure. McGraw-Hill, New York, USA, pp 84–137Google Scholar
  13. 13.
    Morré DJ, Mollenhauer HH (1964) Isolation of Golgi apparatus from plant cells. J Cell Biol 23:295–305CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheetham RD, Morré DJ, Yunghans WN (1970) Isolation of a Golgi apparatus-rich fraction from rat liver. II Enzymatic characterization and comparison with other cell fractions. J Cell Biol 44:492–500CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Morré DJ, Hamilton RL, Mollenhauer HH et al (1970) Isolation of a Golgi apparatus-rich fraction from rat liver: I. Method and morphology. J Cell Biol 44:484–491CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Taylor RS, Jones SM, Dahl RH et al (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8:1911–1931CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Forsmark A, Rossi G, Wadskog I et al (2011) Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion. Traffic 12:740–753CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zeng W, Jiang N, Nadella R et al (2010) A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol 154:78–97CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boevink P, Oparka K, Cruz SS et al (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447CrossRefPubMedGoogle Scholar
  20. 20.
    Dunkley TPJ, Watson R, Griffin JL et al (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128–1134CrossRefPubMedGoogle Scholar
  21. 21.
    Nikolovski N, Rubtsov D, Segura MP et al (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol 160:1037–1051CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Parsons HT, Weinberg CS, Macdonald LJ et al (2013) Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis. PLoS One 8:e84669CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parsons HT, Christiansen K, Knierim B et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel targets involved in plant cell wall biosynthesis. Plant Physiol 159:12–26CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Parsons HT, González Fernández-Niño SM, Heazlewood JL (2014) In: Jorrín Novo JV, Komatsu S, Weckwerth W, Weinkoop S (eds) Plant proteomics: methods and protocols, vol 1072, 2nd edn. Humana Press, New York, pp 527–539CrossRefGoogle Scholar
  25. 25.
    Dhugga KS, Barreiro R, Whitten B et al (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366CrossRefPubMedGoogle Scholar
  26. 26.
    Munoz P, Norambuena L, Orellana A (1996) Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol 112:1585–1594PubMedPubMedCentralGoogle Scholar
  27. 27.
    Mikami S, Hori H, Mitsui T (2001) Separation of distinct compartments of rice Golgi complex by sucrose density gradient centrifugation. Plant Sci 161:665–675CrossRefGoogle Scholar
  28. 28.
    Sturm A, Johnson KD, Szumilo T et al (1987) Subcellular-localization of glycosidases and glycosyltransferases involved in the processing of N-Linked oligosaccharides. Plant Physiol 85:741–745CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang YD, Elamawi R, Bubeck J et al (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Earley KW, Haag JR, Pontes O et al (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629CrossRefPubMedGoogle Scholar
  31. 31.
    Chiu TY, Christiansen K, Moreno I et al (2012) AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol 53:1913–1925CrossRefPubMedGoogle Scholar
  32. 32.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wei Zeng
    • 1
  • Berit Ebert
    • 1
    • 2
  • Harriet T. Parsons
    • 3
  • Carsten Rautengarten
    • 1
    • 2
  • Antony Bacic
    • 1
  • Joshua L. Heazlewood
    • 3
    • 4
  1. 1.The ARC Centre of Excellence in Plant Cell Walls, School of BiosciencesThe University of MelbourneMelbourneAustralia
  2. 2.Department of BiochemistryUniversity of CambridgeCambridge CB2 1QRUK
  3. 3.Joint BioEnergy Institute and Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.School of BioSciencesThe University of MelbourneMelbourneAustralia

Personalised recommendations