Modulation of STAT1-Driven Transcriptional Activity by Histone Deacetylases

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1510)

Abstract

The luciferase (LUC) reporter assay is commonly used to study gene expression at the transcriptional level. It is convenient, fast, sensitive, inexpensive, and provides quantitative data about small changes in transcription. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that plays a crucial role in signaling by interferons (IFNs). Here, we describe LUC reporter studies that address the role of histone deacetylase (HDAC) activity in STAT1-dependent gene activation. These experiments include overexpression of HDAC1, HDAC2, HDAC3, and HDAC4 as well as silencing of HDAC1, HDAC2, and HDAC3 through RNA interference in mammalian cancer cells.

Key words

STAT1 HDAC HDAC inhibitors Interferons Luciferase gene reporter 

References

  1. 1.
    Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421CrossRefPubMedGoogle Scholar
  2. 2.
    Schindler C, Shuai K, Prezioso VR, Darnell JE Jr (1992) Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257:809–813CrossRefPubMedGoogle Scholar
  3. 3.
    Jove R (2000) Preface: STAT signaling. Oncogene 19:2466–2467CrossRefPubMedGoogle Scholar
  4. 4.
    Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637CrossRefPubMedGoogle Scholar
  5. 5.
    Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I et al (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38:250–262CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635CrossRefPubMedGoogle Scholar
  7. 7.
    Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14:36–49CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36:503–514CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ginter T, Fahrer J, Krohnert U, Fetz V, Garrone A, Stauber RH et al (2014) Arginine residues within the DNA binding domain of STAT3 promote intracellular shuttling and phosphorylation of STAT3. Cell Signal 26:1698–1706CrossRefPubMedGoogle Scholar
  10. 10.
    Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L (2003) Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1:855–862PubMedGoogle Scholar
  11. 11.
    Klampfer L, Huang J, Swaby LA, Augenlicht L (2004) Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 279:30358–30368CrossRefPubMedGoogle Scholar
  12. 12.
    Chang HM, Paulson M, Holko M, Rice CM, Williams BR, Marie I et al (2004) Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci U S A 101:9578–9583CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nusinzon I, Horvath CM (2006) Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26:3106–3113CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salvi V, Bosisio D, Mitola S, Andreoli L, Tincani A, Sozzani S (2010) Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology 215:756–761CrossRefPubMedGoogle Scholar
  15. 15.
    Mounce BC, Mboko WP, Kanack AJ, Tarakanova VL (2014) Primary macrophages rely on histone deacetylase 1 and 2 expression to induce type I interferon in response to gammaherpesvirus infection. J Virol 88:2268–2278CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM et al (1997) Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci U S A 94:1074–1079CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE et al (1998) A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A 95:3519–3524CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356CrossRefPubMedGoogle Scholar
  19. 19.
    Yang WM, Yao YL, Sun JM, Davie JR, Seto E (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007CrossRefPubMedGoogle Scholar
  20. 20.
    Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Drug Discovery Division, Department of Oncology, Cancer ProgramSouthern Research InstituteBirminghamUSA

Personalised recommendations