Skip to main content

Assessing the Histone Deacetylase Activity of SIRT6 in Primary Murine Hepatocytes via Proximity Ligation Assay

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

  • 2141 Accesses

Abstract

Generation of primary cell culture of hepatocytes by mouse liver perfusion (MLP) combines the advantages of in vivo and in vitro models. It provides hepatocytes that grow under physiological conditions in mice, with the genotype of the whole organism or a specific gene knockout. In contrast to immortalized cell cultures, primary murine hepatocytes (pmHep) are non-cancerous cells with a limited lifespan but still amenable to classical in vitro methods such as treatment with drugs, small molecule inhibitors, and agonistic/antagonistic antibodies of surface receptors as well as transfection. One technique, which has gained popularity recently, is the analysis of protein–protein interactions by the proximity ligation assay (PLA). Here, we describe a liver perfusion protocol and the detection of the histone deacetylase function of Sirtuin 6 (SIRT6) using PLA in pmHep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assimacopoulos-Jeannet F, Exton JH, Jeanrenaud B (1973) Control of gluconeogenesis and glycogenolysis in perfused livers of normal mice. Am J Physiol 225:25–32

    CAS  PubMed  Google Scholar 

  2. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477. doi:10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  3. Söderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232. doi:10.1016/j.ymeth.2008.06.014

    Article  PubMed  Google Scholar 

  4. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798. doi:10.1006/bbrc.2000.3000

    Article  CAS  PubMed  Google Scholar 

  5. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci 97:5807–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–1446. doi:10.1126/science.1202723

    Article  CAS  PubMed  Google Scholar 

  7. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (2013) SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113. doi:10.1038/nature12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286:14575–14587. doi:10.1074/jbc.M111.218990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313–21320. doi:10.1074/jbc.M413296200

    Article  CAS  PubMed  Google Scholar 

  10. Mostoslavsky R, Chua KF, Lombard DB, Pang W, Fischer M, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng WL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329. doi:10.1016/j.cell.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  11. Kugel S, Mostoslavsky R (2014) Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci 39:72–81. doi:10.1016/j.tibs.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TLA, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496. doi:10.1038/nature06736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8:2664–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D, Thorgeirsson SS, Galle PR, Strand S (2013) Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology 58:1054–1064. doi:10.1002/hep.26413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by an Internal University Research Funding program of the Johannes Gutenberg-University Mainz, the Imaging Core Facility of the Research Center for Immunotherapy (FZI), and the International PhD Program of the Institute of Molecular Biology in Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Strand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wolf, K., Strand, S. (2017). Assessing the Histone Deacetylase Activity of SIRT6 in Primary Murine Hepatocytes via Proximity Ligation Assay. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics