Advertisement

MiRNA Biogenesis and Regulation of Diseases: An Overview

  • Anchal Vishnoi
  • Sweta RaniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1509)

Abstract

MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to target mRNAs. Since it was discovered in 1993, miRNA are found in all eukaryotic cells conserved across the species. In recent years, regulation of miRNAs are extensively studied for their role in biological processes as well as in development and progression of various human diseases including retinal disorder, neurodegenerative diseases, cardiovascular disease and cancer. This chapter summarises miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs holds huge potential for diagnostic and prognostic biomarkers, and as predictors of drug response.

Key words

miRNA Retinal disorder Neurodegenerative diseases Cardiovascular disease Cancer 

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  2. 2.
    Felekkis K, Touvana E, Stefanou C et al (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14(4):236–240PubMedPubMedCentralGoogle Scholar
  3. 3.
    Friedlander MR, Lizano E, Houben AJ et al (2014) Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15(4):R57. doi: 10.1186/gb-2014-15-4-r57 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. doi: 10.1093/nar/gkq1027 CrossRefPubMedGoogle Scholar
  5. 5.
    Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770. doi: 10.1038/ng1590 CrossRefPubMedGoogle Scholar
  6. 6.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. doi: 10.1038/nrg2290 CrossRefPubMedGoogle Scholar
  7. 7.
    Saetrom P, Heale BS, Snove O Jr et al (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35(7):2333–2342. doi: 10.1093/nar/gkm133 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  9. 9.
    Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi: 10.1038/35002607 CrossRefPubMedGoogle Scholar
  10. 10.
    Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science (New York, NY) 294(5543):853–858. doi: 10.1126/science.1064921 CrossRefGoogle Scholar
  11. 11.
    Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY) 294(5543):858–862. doi: 10.1126/science.1065062 CrossRefGoogle Scholar
  12. 12.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science (New York, NY) 294(5543):862–864. doi: 10.1126/science.1065329 CrossRefGoogle Scholar
  13. 13.
    Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039. doi: 10.1073/pnas.0510928103 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY) 303(5654):83–86. doi: 10.1126/science.1091903 CrossRefGoogle Scholar
  16. 16.
    Monteys AM, Spengler RM, Wan J et al (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505. doi: 10.1261/rna.1731910 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Martinez NJ, Ow MC, Barrasa MI et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22(18):2535–2549. doi: 10.1101/gad.1678608 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Okamura K, Hagen JW, Duan H et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100. doi: 10.1016/j.cell.2007.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. doi: 10.1038/nature01957 CrossRefPubMedGoogle Scholar
  20. 20.
    Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904. doi: 10.1016/j.biochi.2011.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. doi: 10.1101/gad.1158803 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Aravin AA, Lagos-Quintana M, Yalcin A et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350CrossRefPubMedGoogle Scholar
  23. 23.
    Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739CrossRefPubMedGoogle Scholar
  24. 24.
    MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145. doi: 10.1016/j.sbi.2006.12.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Lau PW, Guiley KZ, De N et al (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19(4):436–440. doi: 10.1038/nsmb.2268 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Papp I, Mette MF, Aufsatz W et al (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132(3):1382–1390CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bollman KM, Aukerman MJ, Park MY et al (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504CrossRefPubMedGoogle Scholar
  28. 28.
    Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884. doi: 10.1073/pnas.0803230105 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ma E, MacRae IJ, Kirsch JF et al (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380(1):237–243. doi: 10.1016/j.jmb.2008.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee Y, Hur I, Park SY et al (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. doi: 10.1038/sj.emboj.7600942 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suzuki HI, Arase M, Matsuyama H et al (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436. doi: 10.1016/j.molcel.2011.09.012 CrossRefPubMedGoogle Scholar
  32. 32.
    Sanghvi VR, Steel LF (2011) The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 85(23):12614–12621. doi: 10.1128/JVI.05240-11 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131(6):1097–1108. doi: 10.1016/j.cell.2007.10.032 CrossRefPubMedGoogle Scholar
  34. 34.
    Yang N, Cao Y, Han P et al (2012) Tools for investigation of the RNA endonuclease activity of mammalian Argonaute2 protein. Anal Chem 84(5):2492–2497. doi: 10.1021/ac2032854 CrossRefPubMedGoogle Scholar
  35. 35.
    Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3(1):36–43. doi: 10.1038/nchembio848 CrossRefPubMedGoogle Scholar
  36. 36.
    Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science (New York, NY) 297(5589):2056–2060. doi: 10.1126/science.1073827 CrossRefGoogle Scholar
  37. 37.
    Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364. doi: 10.1038/ng865 CrossRefPubMedGoogle Scholar
  38. 38.
    Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34CrossRefPubMedGoogle Scholar
  39. 39.
    Ameres SL, Horwich MD, Hung JH et al (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science (New York, NY) 328(5985):1534–1539. doi: 10.1126/science.1187058 CrossRefGoogle Scholar
  40. 40.
    Baccarini A, Chauhan H, Gardner TJ et al (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21(5):369–376. doi: 10.1016/j.cub.2011.01.067 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Katoh T, Sakaguchi Y, Miyauchi K et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23(4):433–438. doi: 10.1101/gad.1761509 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen AJ, Paik JH, Zhang H et al (2012) STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 26(13):1459–1472. doi: 10.1101/gad.189001.112 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tang R, Li L, Zhu D et al (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22(3):504–515. doi: 10.1038/cr.2011.137 CrossRefPubMedGoogle Scholar
  44. 44.
    Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. doi: 10.1242/jcs.128868 CrossRefPubMedGoogle Scholar
  45. 45.
    Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978CrossRefPubMedGoogle Scholar
  46. 46.
    Rani S, Ryan AE, Griffin MD et al (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823. doi: 10.1038/mt.2015.44 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rani S, Ritter T (2015) The Exosome—a naturally secreted nanoparticle and its application to wound healing. Adv Mater. doi: 10.1002/adma.201504009 PubMedGoogle Scholar
  48. 48.
    Feng D, Zhao WL, Ye YY et al (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic (Copenhagen, Denmark) 11(5):675–687. doi: 10.1111/j.1600-0854.2010.01041.x CrossRefGoogle Scholar
  49. 49.
    Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266. doi: 10.1182/blood-2004-03-0824 CrossRefPubMedGoogle Scholar
  50. 50.
    Svensson KJ, Christianson HC, Wittrup A et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724. doi: 10.1074/jbc.M112.445403 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Andreeva K, Cooper NG (2014) MicroRNAs in the neural retina. Int J Genomics 2014:165897. doi: 10.1155/2014/165897 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Damiani D, Alexander JJ, O’Rourke JR et al (2008) Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci 28(19):4878–4887. doi: 10.1523/jneurosci.0828-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pinter R, Hindges R (2010) Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One 5(4), e10021. doi: 10.1371/journal.pone.0010021 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lumayag S, Haldin CE, Corbett NJ et al (2013) Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 110(6):E507–E516. doi: 10.1073/pnas.1212655110 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ragusa M, Caltabiano R, Russo A et al (2013) MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis 19:430–440PubMedPubMedCentralGoogle Scholar
  56. 56.
    Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, Ohio) 30(7):1556–1564. doi: 10.1002/stem.1129 CrossRefGoogle Scholar
  57. 57.
    Romaine SP, Tomaszewski M, Condorelli G et al (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101(12):921–928. doi: 10.1136/heartjnl-2013-305402 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/-145 in cardiovascular diseases. BioMed Res Int 2015:531740. doi: 10.1155/2015/531740 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Feng Y, Huang W, Wani M et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2), e88685. doi: 10.1371/journal.pone.0088685 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yu B, Gong M, Wang Y et al (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8(8), e73304. doi: 10.1371/journal.pone.0073304 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    van Schooneveld E, Wildiers H, Vergote I et al (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21. doi: 10.1186/s13058-015-0526-y CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rani S, Gately K, Crown J et al (2013) Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 14(12):1104–1112. doi: 10.4161/cbt.26370 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Peng Y, Dai Y, Hitchcock C et al (2013) Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci U S A 110(37):15043–15048. doi: 10.1073/pnas.1307107110 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhu J, Zheng Z, Wang J et al (2014) Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 5:149. doi: 10.3389/fgene.2014.00149 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gee HE, Camps C, Buffa FM et al (2008) MicroRNA-10b and breast cancer metastasis. Nature 455(7216):E8–E9. doi: 10.1038/nature07362, author reply E9CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.SEQOME LtdWaterfordIreland
  2. 2.Department of ScienceWaterford Institute of TechnologyWaterfordIreland

Personalised recommendations